On α- and β-recursively enumerable degrees

Wolfgang Maass
{"title":"On α- and β-recursively enumerable degrees","authors":"Wolfgang Maass","doi":"10.1016/0003-4843(79)90002-0","DOIUrl":null,"url":null,"abstract":"<div><p>Several problems in recursion theory on admissible ordinals (α-recursion theory) and recursion theory of inadmissible ordinals (β-recursion theory) are studied. Fruitful interactions between both theories are stressed. In the first part of the admissible collapse is used in order to characterize for some inadmissible β the structure of all β-recursively enumerable degrees as an accumulation of structures of <span><math><mtext>U</mtext></math></span>-recursively enumerable degrees for many admissible structures <span><math><mtext>U</mtext></math></span>. Thus problems about the β-recursively enumerable degrees can be solved by considering “locally” the analogous problem in an admissible <span><math><mtext>U</mtext></math></span> (where results of α-recursion theory apply). In the second part β-recursion theory is used as a tool in infinite injury priority constructions for some particularly interesting α (e.g. <em>ω</em><sub>1</sub><sup>CK</sup>). New effects can be observed since some structure of the inadmissible world above <em>O</em>′ is projected into the α-recursively enumerable degrees by inverting the jump. The gained understanding of the jump of α-recursively enumerable degrees makes it possible to solve some open problems.</p></div>","PeriodicalId":100093,"journal":{"name":"Annals of Mathematical Logic","volume":"16 3","pages":"Pages 205-231"},"PeriodicalIF":0.0000,"publicationDate":"1979-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0003-4843(79)90002-0","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Mathematical Logic","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0003484379900020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Several problems in recursion theory on admissible ordinals (α-recursion theory) and recursion theory of inadmissible ordinals (β-recursion theory) are studied. Fruitful interactions between both theories are stressed. In the first part of the admissible collapse is used in order to characterize for some inadmissible β the structure of all β-recursively enumerable degrees as an accumulation of structures of U-recursively enumerable degrees for many admissible structures U. Thus problems about the β-recursively enumerable degrees can be solved by considering “locally” the analogous problem in an admissible U (where results of α-recursion theory apply). In the second part β-recursion theory is used as a tool in infinite injury priority constructions for some particularly interesting α (e.g. ω1CK). New effects can be observed since some structure of the inadmissible world above O′ is projected into the α-recursively enumerable degrees by inverting the jump. The gained understanding of the jump of α-recursively enumerable degrees makes it possible to solve some open problems.

在α-和β-递归可数度上
研究了可容许序数的递归理论(α-递归理论)和不可容许序数的递归理论(β-递归理论)中的几个问题。强调两种理论之间富有成效的相互作用。在第一部分中,为了将不可容许的β的所有β-递归可数度的结构描述为许多可容许结构U的U-递归可数度结构的积累,利用可容许的β-递归可数度的结构,可以通过“局部”考虑可容许的U中的类似问题来解决β-递归可数度的问题(其中适用α-递归理论的结果)。在第二部分中,β-递归理论被用作一些特别有趣的α(例如ω1CK)的无限损伤优先级结构的工具。由于在O '以上不可容许世界的某些结构通过反转跃迁被投射到α-递归可数度中,因此可以观察到新的效应。对α-递归可枚举度跳变的认识,为解决一些开放问题提供了可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信