DREAMPlace 2.0: Open-Source GPU-Accelerated Global and Detailed Placement for Large-Scale VLSI Designs

Yibo Lin, D. Pan, Haoxing Ren, Brucek Khailany
{"title":"DREAMPlace 2.0: Open-Source GPU-Accelerated Global and Detailed Placement for Large-Scale VLSI Designs","authors":"Yibo Lin, D. Pan, Haoxing Ren, Brucek Khailany","doi":"10.1109/CSTIC49141.2020.9282573","DOIUrl":null,"url":null,"abstract":"Modern backend design flow for very-large-scale-integrated (VLSI) circuits consists of many complicated stages and requires long turn-around time. Among these stages, VLSI placement plays a fundamental role in determining the physical locations of standard cells. Due to increasingly large design sizes, placement algorithms usually require long execution time to achieve high-quality solutions. Meanwhile, developing a placer often needs huge coding effort and tedius tuning, raising the bar of further researches. In this work, we present an open-source placement framework, DREAMPlace 2.01, with deep learning toolkit-enabled GPU acceleration for both global and detailed placement optimization to tackle the issues of efficiency and development overhead.","PeriodicalId":6848,"journal":{"name":"2020 China Semiconductor Technology International Conference (CSTIC)","volume":"11 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 China Semiconductor Technology International Conference (CSTIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSTIC49141.2020.9282573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Modern backend design flow for very-large-scale-integrated (VLSI) circuits consists of many complicated stages and requires long turn-around time. Among these stages, VLSI placement plays a fundamental role in determining the physical locations of standard cells. Due to increasingly large design sizes, placement algorithms usually require long execution time to achieve high-quality solutions. Meanwhile, developing a placer often needs huge coding effort and tedius tuning, raising the bar of further researches. In this work, we present an open-source placement framework, DREAMPlace 2.01, with deep learning toolkit-enabled GPU acceleration for both global and detailed placement optimization to tackle the issues of efficiency and development overhead.
DREAMPlace 2.0:大规模VLSI设计的开源gpu加速全局和详细布局
超大规模集成电路(VLSI)的现代后端设计流程包括许多复杂的阶段,需要很长的周转时间。在这些阶段中,超大规模集成电路的放置在确定标准单元的物理位置方面起着基本的作用。由于设计尺寸越来越大,放置算法通常需要较长的执行时间才能获得高质量的解决方案。同时,开发一个砂矿往往需要大量的编码工作和繁琐的调优,提高了进一步研究的门槛。在这项工作中,我们提出了一个开源的放置框架,DREAMPlace 2.01,具有深度学习工具包支持的GPU加速,用于全局和详细的放置优化,以解决效率和开发开销问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信