The Electronic Structure of Genome Editors from the First Principles.

IF 2.9 Q3 CHEMISTRY, PHYSICAL
Łukasz Nierzwicki, Mohd Ahsan, Giulia Palermo
{"title":"The Electronic Structure of Genome Editors from the First Principles.","authors":"Łukasz Nierzwicki,&nbsp;Mohd Ahsan,&nbsp;Giulia Palermo","doi":"10.1088/2516-1075/acb410","DOIUrl":null,"url":null,"abstract":"<p><p>Genome editing based on the CRISPR-Cas9 system has paved new avenues for medicine, pharmaceutics, biotechnology, and beyond. This article reports the role of first-principles (ab-initio) molecular dynamics (MD) in the CRISPR-Cas9 revolution, achieving a profound understanding of the enzymatic function and offering valuable insights for enzyme engineering. We introduce the methodologies and explain the use of ab-initio MD simulations to characterize the two-metal dependent mechanism of DNA cleavage in the RuvC domain of the Cas9 enzyme, and how a second catalytic domain, HNH, cleaves the target DNA with the aid of a single metal ion. A detailed description of how ab-initio MD is combined with free-energy methods - i.e., thermodynamic integration and metadynamics - to break and form chemical bonds is given, explaining the use of these methods to determine the chemical landscape and establish the catalytic mechanism in CRISPR-Cas9. The critical role of classical methods is also discussed, explaining theory and application of constant pH MD simulations, used to accurately predict the catalytic residues' protonation states. Overall, first-principles methods are shown to unravel the electronic structure of the Cas9 enzyme, providing valuable insights that can serve for the design of genome editing tools with improved catalytic efficiency or controllable activity.</p>","PeriodicalId":42419,"journal":{"name":"Electronic Structure","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10016068/pdf/nihms-1873896.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Structure","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2516-1075/acb410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 1

Abstract

Genome editing based on the CRISPR-Cas9 system has paved new avenues for medicine, pharmaceutics, biotechnology, and beyond. This article reports the role of first-principles (ab-initio) molecular dynamics (MD) in the CRISPR-Cas9 revolution, achieving a profound understanding of the enzymatic function and offering valuable insights for enzyme engineering. We introduce the methodologies and explain the use of ab-initio MD simulations to characterize the two-metal dependent mechanism of DNA cleavage in the RuvC domain of the Cas9 enzyme, and how a second catalytic domain, HNH, cleaves the target DNA with the aid of a single metal ion. A detailed description of how ab-initio MD is combined with free-energy methods - i.e., thermodynamic integration and metadynamics - to break and form chemical bonds is given, explaining the use of these methods to determine the chemical landscape and establish the catalytic mechanism in CRISPR-Cas9. The critical role of classical methods is also discussed, explaining theory and application of constant pH MD simulations, used to accurately predict the catalytic residues' protonation states. Overall, first-principles methods are shown to unravel the electronic structure of the Cas9 enzyme, providing valuable insights that can serve for the design of genome editing tools with improved catalytic efficiency or controllable activity.

从第一原理看基因组编辑器的电子结构。
基于CRISPR-Cas9系统的基因组编辑为医学、制药、生物技术等领域铺平了新的道路。本文报道了第一性原理(ab-initio)分子动力学(MD)在CRISPR-Cas9革命中的作用,实现了对酶功能的深刻理解,为酶工程提供了有价值的见解。我们介绍了方法并解释了使用ab-initio MD模拟来表征Cas9酶RuvC结构域中DNA切割的双金属依赖机制,以及第二个催化结构域HNH如何在单个金属离子的帮助下切割目标DNA。详细描述了ab-initio MD如何与自由能方法(即热力学集成和元动力学)相结合来破坏和形成化学键,并解释了使用这些方法来确定CRISPR-Cas9中的化学景观和建立催化机制。讨论了经典方法的关键作用,解释了恒定pH MD模拟的理论和应用,用于准确预测催化残基的质子化状态。总的来说,第一性原理方法揭示了Cas9酶的电子结构,为设计具有更高催化效率或可控活性的基因组编辑工具提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.70
自引率
11.50%
发文量
46
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信