Scalable DPG Multigrid Solver for Helmholtz Problems: A Study on Convergence

Jacob Badger, Stefan Henneking, S. Petrides, L. Demkowicz
{"title":"Scalable DPG Multigrid Solver for Helmholtz Problems: A Study on Convergence","authors":"Jacob Badger, Stefan Henneking, S. Petrides, L. Demkowicz","doi":"10.48550/arXiv.2304.01728","DOIUrl":null,"url":null,"abstract":"This paper presents a scalable multigrid preconditioner targeting large-scale systems arising from discontinuous Petrov-Galerkin (DPG) discretizations of high-frequency wave operators. This work is built on previously developed multigrid preconditioning techniques of Petrides and Demkowicz (Comput. Math. Appl. 87 (2021) pp. 12-26) and extends the convergence results from $\\mathcal{O}(10^7)$ degrees of freedom (DOFs) to $\\mathcal{O}(10^9)$ DOFs using a new scalable parallel MPI/OpenMP implementation. Novel contributions of this paper include an alternative definition of coarse-grid systems based on restriction of fine-grid operators, yielding superior convergence results. In the uniform refinement setting, a detailed convergence study is provided, demonstrating h and p robust convergence and linear dependence with respect to the wave frequency. The paper concludes with numerical results on hp-adaptive simulations including a large-scale seismic modeling benchmark problem with high material contrast.","PeriodicalId":10572,"journal":{"name":"Comput. Math. Appl.","volume":"121 ","pages":"81-92"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comput. Math. Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2304.01728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper presents a scalable multigrid preconditioner targeting large-scale systems arising from discontinuous Petrov-Galerkin (DPG) discretizations of high-frequency wave operators. This work is built on previously developed multigrid preconditioning techniques of Petrides and Demkowicz (Comput. Math. Appl. 87 (2021) pp. 12-26) and extends the convergence results from $\mathcal{O}(10^7)$ degrees of freedom (DOFs) to $\mathcal{O}(10^9)$ DOFs using a new scalable parallel MPI/OpenMP implementation. Novel contributions of this paper include an alternative definition of coarse-grid systems based on restriction of fine-grid operators, yielding superior convergence results. In the uniform refinement setting, a detailed convergence study is provided, demonstrating h and p robust convergence and linear dependence with respect to the wave frequency. The paper concludes with numerical results on hp-adaptive simulations including a large-scale seismic modeling benchmark problem with high material contrast.
Helmholtz问题的可伸缩DPG多网格求解器:收敛性研究
针对高频波算子的不连续Petrov-Galerkin (DPG)离散引起的大系统,提出了一种可扩展的多网格预调节器。这项工作是建立在先前开发的多重网格预处理技术的Petrides和Demkowicz (Comput)。数学。并使用新的可扩展并行MPI/OpenMP实现将收敛结果从$\mathcal{O}(10^7)$自由度(dfs)扩展到$\mathcal{O}(10^9)$ dfs。本文的新贡献包括基于细网格算子限制的粗网格系统的另一种定义,产生了优越的收敛结果。在均匀细化设置下,提供了详细的收敛性研究,证明了h和p的鲁棒收敛性以及与波频率的线性相关性。最后给出了高强度自适应模拟的数值结果,其中包括一个具有高材料对比度的大尺度地震模拟基准问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信