{"title":"Improved Attribute Manipulation in the Latent Space of StyleGAN for Semantic Face Editing","authors":"Aashish Rai, Clara Ducher, J. Cooperstock","doi":"10.1109/ICMLA52953.2021.00014","DOIUrl":null,"url":null,"abstract":"With the recent popularization of generative frameworks for producing photorealistic face images, we now have the ability to create a convincing graphical match for any particular individual. It is unrealistic, however, to rely solely on such generative methods to randomly produce the facial characteristics we are seeking. Instead, manipulation of facial attributes in the latent space, enabled by the InterFaceGAN framework, allows us to “tweak” these characteristics in the desired direction to improve the quality of the match. The challenge in this process is that attribute entanglement leads to a change of one feature having an undesirable impact on others. We explore several strategies to improve the results of these manipulations, and demonstrate how the automatic conditioning of attributes can be used to minimize the impact of such entanglement, and further, allow for improved control over complex (non-binary) attributes such as race or face shape.","PeriodicalId":6750,"journal":{"name":"2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"21 39","pages":"38-43"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA52953.2021.00014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
With the recent popularization of generative frameworks for producing photorealistic face images, we now have the ability to create a convincing graphical match for any particular individual. It is unrealistic, however, to rely solely on such generative methods to randomly produce the facial characteristics we are seeking. Instead, manipulation of facial attributes in the latent space, enabled by the InterFaceGAN framework, allows us to “tweak” these characteristics in the desired direction to improve the quality of the match. The challenge in this process is that attribute entanglement leads to a change of one feature having an undesirable impact on others. We explore several strategies to improve the results of these manipulations, and demonstrate how the automatic conditioning of attributes can be used to minimize the impact of such entanglement, and further, allow for improved control over complex (non-binary) attributes such as race or face shape.