Improved Attribute Manipulation in the Latent Space of StyleGAN for Semantic Face Editing

Aashish Rai, Clara Ducher, J. Cooperstock
{"title":"Improved Attribute Manipulation in the Latent Space of StyleGAN for Semantic Face Editing","authors":"Aashish Rai, Clara Ducher, J. Cooperstock","doi":"10.1109/ICMLA52953.2021.00014","DOIUrl":null,"url":null,"abstract":"With the recent popularization of generative frameworks for producing photorealistic face images, we now have the ability to create a convincing graphical match for any particular individual. It is unrealistic, however, to rely solely on such generative methods to randomly produce the facial characteristics we are seeking. Instead, manipulation of facial attributes in the latent space, enabled by the InterFaceGAN framework, allows us to “tweak” these characteristics in the desired direction to improve the quality of the match. The challenge in this process is that attribute entanglement leads to a change of one feature having an undesirable impact on others. We explore several strategies to improve the results of these manipulations, and demonstrate how the automatic conditioning of attributes can be used to minimize the impact of such entanglement, and further, allow for improved control over complex (non-binary) attributes such as race or face shape.","PeriodicalId":6750,"journal":{"name":"2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"21 39","pages":"38-43"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA52953.2021.00014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

With the recent popularization of generative frameworks for producing photorealistic face images, we now have the ability to create a convincing graphical match for any particular individual. It is unrealistic, however, to rely solely on such generative methods to randomly produce the facial characteristics we are seeking. Instead, manipulation of facial attributes in the latent space, enabled by the InterFaceGAN framework, allows us to “tweak” these characteristics in the desired direction to improve the quality of the match. The challenge in this process is that attribute entanglement leads to a change of one feature having an undesirable impact on others. We explore several strategies to improve the results of these manipulations, and demonstrate how the automatic conditioning of attributes can be used to minimize the impact of such entanglement, and further, allow for improved control over complex (non-binary) attributes such as race or face shape.
面向语义人脸编辑的StyleGAN隐空间属性操作改进
随着最近用于生成逼真人脸图像的生成框架的普及,我们现在有能力为任何特定个体创建令人信服的图形匹配。然而,仅仅依靠这种生成方法来随机生成我们正在寻找的面部特征是不现实的。相反,通过InterFaceGAN框架在潜在空间中操纵面部属性,允许我们在期望的方向上“调整”这些特征,以提高匹配的质量。这个过程中的挑战是,属性纠缠会导致一个特性的改变对其他特性产生不良影响。我们探索了几种策略来改善这些操作的结果,并展示了如何使用属性的自动条件反射来最小化这种纠缠的影响,并且进一步允许改进对复杂(非二进制)属性(如种族或脸型)的控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信