{"title":"Development of turning process digital twin based on machine learning","authors":"D. Rastorguev, A. Sevastyanov","doi":"10.18323/2073-5073-2021-1-32-41","DOIUrl":null,"url":null,"abstract":"Today, manufacturing technologies are developing within the Industry 4.0 concept, which is the information technologies introduction in manufacturing. One of the most promising digital technologies finding more and more application in manufacturing is a digital twin. A digital twin is an ensemble of mathematical models of technological process, which exchanges information with its physical prototype in real-time. The paper considers an example of the formation of several interconnected predictive modules, which are a part of the structure of the turning process digital twin and designed to predict the quality of processing, the chip formation nature, and the cutting force. The authors carried out a three-factor experiment on the hard turning of 105WCr6 steel hardened to 55 HRC. Used an example of the conducted experiment, the authors described the process of development of the digital twin diagnostic module based on artificial neural networks. When developing a mathematical model for predicting and diagnosing the cutting process, the authors revealed higher accuracy, adaptability, and versatility of artificial neural networks. The developed mathematical model of online diagnostics of the cutting process for determining the surface quality and chip type during processing uses the actual value of the cutting depth determined indirectly by the force load on the drive. In this case, the model uses only the signals of the sensors included in the diagnostic subsystem on the CNC machine. As an informative feature reflecting the force load on the machine’s main motion drive, the authors selected the value of the energy of the current signal of the spindle drive motor. The study identified that the development of a digital twin is possible due to the development of additional modules predicting the accuracy of dimensions, geometric profile, tool wear.","PeriodicalId":23555,"journal":{"name":"Vektor nauki Tol'yattinskogo gosudarstvennogo universiteta","volume":"170 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vektor nauki Tol'yattinskogo gosudarstvennogo universiteta","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18323/2073-5073-2021-1-32-41","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Today, manufacturing technologies are developing within the Industry 4.0 concept, which is the information technologies introduction in manufacturing. One of the most promising digital technologies finding more and more application in manufacturing is a digital twin. A digital twin is an ensemble of mathematical models of technological process, which exchanges information with its physical prototype in real-time. The paper considers an example of the formation of several interconnected predictive modules, which are a part of the structure of the turning process digital twin and designed to predict the quality of processing, the chip formation nature, and the cutting force. The authors carried out a three-factor experiment on the hard turning of 105WCr6 steel hardened to 55 HRC. Used an example of the conducted experiment, the authors described the process of development of the digital twin diagnostic module based on artificial neural networks. When developing a mathematical model for predicting and diagnosing the cutting process, the authors revealed higher accuracy, adaptability, and versatility of artificial neural networks. The developed mathematical model of online diagnostics of the cutting process for determining the surface quality and chip type during processing uses the actual value of the cutting depth determined indirectly by the force load on the drive. In this case, the model uses only the signals of the sensors included in the diagnostic subsystem on the CNC machine. As an informative feature reflecting the force load on the machine’s main motion drive, the authors selected the value of the energy of the current signal of the spindle drive motor. The study identified that the development of a digital twin is possible due to the development of additional modules predicting the accuracy of dimensions, geometric profile, tool wear.