Non-uniform directional dictionary-based limited feedback for massive MIMO systems

Panos N. Alevizos, Xiao Fu, N. Sidiropoulos, Ye Yang, A. Bletsas
{"title":"Non-uniform directional dictionary-based limited feedback for massive MIMO systems","authors":"Panos N. Alevizos, Xiao Fu, N. Sidiropoulos, Ye Yang, A. Bletsas","doi":"10.23919/WIOPT.2017.7959904","DOIUrl":null,"url":null,"abstract":"This work proposes a new limited feedback channel estimation framework. The proposed approach exploits a sparse representation of the double directional wireless channel model involving an over complete dictionary that accounts for the antenna directivity patterns at both base station (BS) and user equipment (UE). Under this sparse representation, a computationally efficient limited feedback algorithm that is based on single-bit compressive sensing is proposed to effectively estimate the downlink channel. The algorithm is lightweight in terms of computation, and suitable for real-time implementation in practical systems. More importantly, under our design, using a small number of feedback bits, very satisfactory channel estimation accuracy is achieved even when the number of BS antennas is very large, which makes the proposed scheme ideal for massive MIMO 5G cellular networks. Judiciously designed simulations reveal that the proposed algorithm outperforms a number of popular feedback schemes in terms of beam forming gain for subsequent downlink transmission, and reduces feedback overhead substantially when the BS has a large number of antennas.","PeriodicalId":6630,"journal":{"name":"2017 15th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 15th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/WIOPT.2017.7959904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This work proposes a new limited feedback channel estimation framework. The proposed approach exploits a sparse representation of the double directional wireless channel model involving an over complete dictionary that accounts for the antenna directivity patterns at both base station (BS) and user equipment (UE). Under this sparse representation, a computationally efficient limited feedback algorithm that is based on single-bit compressive sensing is proposed to effectively estimate the downlink channel. The algorithm is lightweight in terms of computation, and suitable for real-time implementation in practical systems. More importantly, under our design, using a small number of feedback bits, very satisfactory channel estimation accuracy is achieved even when the number of BS antennas is very large, which makes the proposed scheme ideal for massive MIMO 5G cellular networks. Judiciously designed simulations reveal that the proposed algorithm outperforms a number of popular feedback schemes in terms of beam forming gain for subsequent downlink transmission, and reduces feedback overhead substantially when the BS has a large number of antennas.
基于非均匀方向字典的大规模MIMO系统有限反馈
本文提出了一种新的有限反馈信道估计框架。所提出的方法利用双向无线信道模型的稀疏表示,该模型涉及一个解释基站(BS)和用户设备(UE)的天线指向性模式的超完整字典。在这种稀疏表示下,提出了一种基于单比特压缩感知的计算效率高的有限反馈算法来有效地估计下行信道。该算法计算量轻,适合在实际系统中实时实现。更重要的是,在我们的设计下,使用少量的反馈位,即使在BS天线数量非常大的情况下,也能获得非常满意的信道估计精度,这使得我们提出的方案非常适合大规模MIMO 5G蜂窝网络。精心设计的仿真结果表明,该算法在后续下行传输的波束形成增益方面优于许多流行的反馈方案,并且在BS具有大量天线时大大减少了反馈开销。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信