{"title":"Using machine learning prediction models for quality control: a case study from the automotive industry.","authors":"Mohamed Kais Msakni, Anders Risan, Peter Schütz","doi":"10.1007/s10287-023-00448-0","DOIUrl":null,"url":null,"abstract":"<p><p>This paper studies a prediction problem using time series data and machine learning algorithms. The case study is related to the quality control of bumper beams in the automotive industry. These parts are milled during the production process, and the locations of the milled holes are subject to strict tolerance limits. Machine learning models are used to predict the location of milled holes in the next beam. By doing so, tolerance violations are detected at an early stage, and the production flow can be improved. A standard neural network, a long short term memory network (LSTM), and random forest algorithms are implemented and trained with historical data, including a time series of previous product measurements. Experiments indicate that all models have similar predictive capabilities with a slight dominance for the LSTM and random forest. The results show that some holes can be predicted with good quality, and the predictions can be used to improve the quality control process. However, other holes show poor results and support the claim that real data problems are challenged by inappropriate information or a lack of relevant information.</p>","PeriodicalId":46743,"journal":{"name":"Computational Management Science","volume":"20 1","pages":"14"},"PeriodicalIF":1.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10019438/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Management Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10287-023-00448-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper studies a prediction problem using time series data and machine learning algorithms. The case study is related to the quality control of bumper beams in the automotive industry. These parts are milled during the production process, and the locations of the milled holes are subject to strict tolerance limits. Machine learning models are used to predict the location of milled holes in the next beam. By doing so, tolerance violations are detected at an early stage, and the production flow can be improved. A standard neural network, a long short term memory network (LSTM), and random forest algorithms are implemented and trained with historical data, including a time series of previous product measurements. Experiments indicate that all models have similar predictive capabilities with a slight dominance for the LSTM and random forest. The results show that some holes can be predicted with good quality, and the predictions can be used to improve the quality control process. However, other holes show poor results and support the claim that real data problems are challenged by inappropriate information or a lack of relevant information.
期刊介绍:
Computational Management Science (CMS) is an international journal focusing on all computational aspects of management science. These include theoretical and empirical analysis of computational models; computational statistics; analysis and applications of constrained, unconstrained, robust, stochastic and combinatorial optimisation algorithms; dynamic models, such as dynamic programming and decision trees; new search tools and algorithms for global optimisation, modelling, learning and forecasting; models and tools of knowledge acquisition.
The emphasis on computational paradigms is an intended feature of CMS, distinguishing it from more classical operations research journals.
Officially cited as: Comput Manag Sci