Improving an AI-Based Algorithm to Automatically Generate Concept Maps

Sara Alomari, S. Abdullah
{"title":"Improving an AI-Based Algorithm to Automatically Generate Concept Maps","authors":"Sara Alomari, S. Abdullah","doi":"10.5539/cis.v12n4p72","DOIUrl":null,"url":null,"abstract":"Concept maps have been used to assist learners as an effective learning method in identifying relationships between information, especially when teaching materials have many topics or concepts. However, making a manual concept map is a long and tedious task. It is time-consuming and demands an intensive effort in reading the full content and reasoning the relationships among concepts. Due to this inefficiency, many studies are carried out to develop intelligent algorithms using several data mining techniques. In this research, the authors aim at improving Text Analysis-Association Rules Mining (TA-ARM) algorithm using the weighted K-nearest neighbors (KNN) algorithm instead of the traditional KNN. The weighted KNN is expected to optimize the classification accuracy, which will, eventually, enhance the quality of the generated concept map.","PeriodicalId":14676,"journal":{"name":"J. Chem. Inf. Comput. Sci.","volume":"81 8","pages":"72-83"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Chem. Inf. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5539/cis.v12n4p72","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Concept maps have been used to assist learners as an effective learning method in identifying relationships between information, especially when teaching materials have many topics or concepts. However, making a manual concept map is a long and tedious task. It is time-consuming and demands an intensive effort in reading the full content and reasoning the relationships among concepts. Due to this inefficiency, many studies are carried out to develop intelligent algorithms using several data mining techniques. In this research, the authors aim at improving Text Analysis-Association Rules Mining (TA-ARM) algorithm using the weighted K-nearest neighbors (KNN) algorithm instead of the traditional KNN. The weighted KNN is expected to optimize the classification accuracy, which will, eventually, enhance the quality of the generated concept map.
一种基于人工智能的概念图自动生成算法的改进
概念图作为一种有效的学习方法被用来帮助学习者识别信息之间的关系,特别是当教材有许多主题或概念时。然而,制作手工概念图是一项漫长而乏味的任务。阅读全部内容和推理概念之间的关系需要耗费大量时间和精力。由于这种低效率,许多研究使用几种数据挖掘技术来开发智能算法。在本研究中,作者旨在使用加权k近邻(KNN)算法代替传统的KNN算法来改进文本分析-关联规则挖掘(TA-ARM)算法。加权KNN有望优化分类精度,最终提高生成的概念图的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信