Kihwan Kim, Evan Kimberly, Andrew Damiani, G. Hanket, W. Shafarman
{"title":"+Three-step H2Se/Ar/H2S reaction of metal precursors for large area Cu(In,Ga)(Se,S)2 with uniform Ga distribution","authors":"Kihwan Kim, Evan Kimberly, Andrew Damiani, G. Hanket, W. Shafarman","doi":"10.1109/pvsc-vol2.2012.6656716","DOIUrl":null,"url":null,"abstract":"A three-step H<inf>2</inf>Se/Ar/H<inf>2</inf>S reaction is used to process Cu-In-Ga metal precursors to form Cu(In,Ga)(Se,S)<inf>2</inf> films over 10 × 10 cm<sup>2</sup> substrates. The 1<sup>st</sup> selenization step gives fine microstructure with Ga accumulation near the Mo back contact, primarily in a Cu<inf>9</inf>Ga<inf>4</inf> phase. Significant grain growth with homogenous through-film Ga distribution is obtained by the 2<sup>nd</sup> Ar annealing step. The 3<sup>rd</sup> sulfization step completes the reaction process and incorporates S near the Cu(In,Ga)Se<inf>2</inf> surface. The resulting films show good adhesion and yielded devices with η = 14.8% and V<inf>OC</inf> = 612 mV.","PeriodicalId":6420,"journal":{"name":"2012 IEEE 38th Photovoltaic Specialists Conference (PVSC) PART 2","volume":"19 3","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 38th Photovoltaic Specialists Conference (PVSC) PART 2","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/pvsc-vol2.2012.6656716","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
A three-step H2Se/Ar/H2S reaction is used to process Cu-In-Ga metal precursors to form Cu(In,Ga)(Se,S)2 films over 10 × 10 cm2 substrates. The 1st selenization step gives fine microstructure with Ga accumulation near the Mo back contact, primarily in a Cu9Ga4 phase. Significant grain growth with homogenous through-film Ga distribution is obtained by the 2nd Ar annealing step. The 3rd sulfization step completes the reaction process and incorporates S near the Cu(In,Ga)Se2 surface. The resulting films show good adhesion and yielded devices with η = 14.8% and VOC = 612 mV.