Automatic ocular correction in EEG recordings using maximum likelihood estimation

Sajjad Karimi, B. Molaee-Ardekani, M. Shamsollahi, C. Leroy, P. Derambure
{"title":"Automatic ocular correction in EEG recordings using maximum likelihood estimation","authors":"Sajjad Karimi, B. Molaee-Ardekani, M. Shamsollahi, C. Leroy, P. Derambure","doi":"10.1109/ISSPIT.2013.6781873","DOIUrl":null,"url":null,"abstract":"The electrooculogram (EOG) artifact is one of the main contaminators of electroencephalographic recording (EEG). EOG can make serious problems in results and interpretations of EEG processing. Rejecting contaminated EEG segments result in an unacceptable data loss. Many methods were proposed to correct EOG artifact mainly based on regression and blind source separation (BSS). In this study, we proposed an automatic correction method based on maximum likelihood estimation. The proposed method was applied to our simulated data (real artifact free EEG plus controlled EOG) and results show that this method gives superior performance to Schlögl and SOBI methods.","PeriodicalId":88960,"journal":{"name":"Proceedings of the ... IEEE International Symposium on Signal Processing and Information Technology. IEEE International Symposium on Signal Processing and Information Technology","volume":"10 8","pages":"000164-000169"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... IEEE International Symposium on Signal Processing and Information Technology. IEEE International Symposium on Signal Processing and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPIT.2013.6781873","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The electrooculogram (EOG) artifact is one of the main contaminators of electroencephalographic recording (EEG). EOG can make serious problems in results and interpretations of EEG processing. Rejecting contaminated EEG segments result in an unacceptable data loss. Many methods were proposed to correct EOG artifact mainly based on regression and blind source separation (BSS). In this study, we proposed an automatic correction method based on maximum likelihood estimation. The proposed method was applied to our simulated data (real artifact free EEG plus controlled EOG) and results show that this method gives superior performance to Schlögl and SOBI methods.
使用最大似然估计的脑电图记录自动眼校正
眼电伪影是脑电图记录的主要污染源之一。脑电图在脑电图处理的结果和解释上存在严重问题。拒绝受污染的EEG片段会导致不可接受的数据丢失。提出了许多基于回归和盲源分离(BSS)的EOG伪影校正方法。在本研究中,我们提出了一种基于极大似然估计的自动校正方法。将该方法应用于仿真数据(真实无伪影EEG +可控EOG),结果表明该方法比Schlögl和SOBI方法具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信