{"title":"Utilization of Waste Glass Powder in Cement Mortar","authors":"D. Nagrockienė, K. Barkauskas","doi":"10.3390/environsciproc2021009025","DOIUrl":null,"url":null,"abstract":"Every year, millions of tons of waste glass are generated all over the world and disposed in landfills. Utilization of this waste by substituting a certain share of cement in cement mortars can contribute to the reduction of environmental pollution in two aspects: the utilization of waste and the reduction of the cement content in cement-based mortars. The cement industry is responsible for approximately 6% of global CO2 emissions. Seven different mortar mixes, containing between 0% and 30% of waste glass powder added by weight of cement, were analyzed. The following physical and mechanical properties of the mortar mixes were measured: compressive strength, flexural strength, and density. The test results revealed that waste glass powder can be used in small amounts in cement-based mortars to reduce the amount of cement and to utilize waste glass. A higher performance, modified cement-based mortar can be produced for civil engineering applications by replacing 5% with waste glass powder. The linear regression equations obtained illustrate the relationships between the density and compressive strength, and between density and flexural strength at 28 days.","PeriodicalId":11904,"journal":{"name":"Environmental Sciences Proceedings","volume":"14 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Sciences Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/environsciproc2021009025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Every year, millions of tons of waste glass are generated all over the world and disposed in landfills. Utilization of this waste by substituting a certain share of cement in cement mortars can contribute to the reduction of environmental pollution in two aspects: the utilization of waste and the reduction of the cement content in cement-based mortars. The cement industry is responsible for approximately 6% of global CO2 emissions. Seven different mortar mixes, containing between 0% and 30% of waste glass powder added by weight of cement, were analyzed. The following physical and mechanical properties of the mortar mixes were measured: compressive strength, flexural strength, and density. The test results revealed that waste glass powder can be used in small amounts in cement-based mortars to reduce the amount of cement and to utilize waste glass. A higher performance, modified cement-based mortar can be produced for civil engineering applications by replacing 5% with waste glass powder. The linear regression equations obtained illustrate the relationships between the density and compressive strength, and between density and flexural strength at 28 days.