BERTopic: Neural topic modeling with a class-based TF-IDF procedure

ArXiv Pub Date : 2022-03-11 DOI:10.48550/arXiv.2203.05794
M. Grootendorst
{"title":"BERTopic: Neural topic modeling with a class-based TF-IDF procedure","authors":"M. Grootendorst","doi":"10.48550/arXiv.2203.05794","DOIUrl":null,"url":null,"abstract":"Topic models can be useful tools to discover latent topics in collections of documents. Recent studies have shown the feasibility of approach topic modeling as a clustering task. We present BERTopic, a topic model that extends this process by extracting coherent topic representation through the development of a class-based variation of TF-IDF. More specifically, BERTopic generates document embedding with pre-trained transformer-based language models, clusters these embeddings, and finally, generates topic representations with the class-based TF-IDF procedure. BERTopic generates coherent topics and remains competitive across a variety of benchmarks involving classical models and those that follow the more recent clustering approach of topic modeling.","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":"36 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"427","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2203.05794","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 427

Abstract

Topic models can be useful tools to discover latent topics in collections of documents. Recent studies have shown the feasibility of approach topic modeling as a clustering task. We present BERTopic, a topic model that extends this process by extracting coherent topic representation through the development of a class-based variation of TF-IDF. More specifically, BERTopic generates document embedding with pre-trained transformer-based language models, clusters these embeddings, and finally, generates topic representations with the class-based TF-IDF procedure. BERTopic generates coherent topics and remains competitive across a variety of benchmarks involving classical models and those that follow the more recent clustering approach of topic modeling.
BERTopic:基于类的TF-IDF过程的神经主题建模
主题模型是发现文档集合中潜在主题的有用工具。近年来的研究表明,方法主题建模作为一种聚类任务是可行的。我们提出了BERTopic,这是一个主题模型,通过开发基于类的TF-IDF变体来提取连贯的主题表示,从而扩展了这一过程。更具体地说,BERTopic使用预训练的基于转换器的语言模型生成文档嵌入,对这些嵌入进行聚类,最后使用基于类的TF-IDF过程生成主题表示。BERTopic生成连贯的主题,并在涉及经典模型和遵循最新主题建模聚类方法的各种基准测试中保持竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信