{"title":"A New Model for Predicting Liquid Loading in Shale Gas Horizontal Wells","authors":"Chao Zhou, Zuqing He, Yashu Chen, Zhifa Wang, A. Mulunjkar, Weishu Zhao","doi":"10.2118/204786-ms","DOIUrl":null,"url":null,"abstract":"\n Current critical flow rate models fail to accurately predict the liquid loading statuses of shale gas horizontal wells. Therefore, a new critical flow rate model for the whole wellbore of shale gas horizontal wells is established. The results of the new model are compared to those of current models through the field case analysis. The new model is based on the dynamic analysis and energy analysis of the deformed liquid-droplet, which takes into account the liquid flow rate, the liquid-droplet deformation and the energy loss caused by the change of buildup rate. The major axis of the maximum stable deformed liquid-droplet is determined based on the energy balance relation. Meanwhile, the suitable drag coefficient equation and surface tension equation applied to shale gas horizontal wells are chosen. Finally, the critical flow rate equation is established and the maximum critical flow rate of the whole wellbore is chosen as the criterion for liquid loading prediction. The precision of liquid loading prediction of the new model is compared to those of the four current models, including Belfroid's model, modified Li's model, liquid film model and modified Wang's model. Field parameters of 29 shale gas horizontal wells are used for the comparison, including parameters of 18 unloaded wells, 2 near loaded-up wells and 9 loaded-up wells. Field case analysis shows that the total precision of liquid loading prediction of the new model is 93.1%, which is higher compared to those of the current four models. The new model can accurately predict the liquid loading statuses of loaded-up wells and near loaded-up wells, while the prediction precision for unloaded wells is high enough for the field application, which is 88.9%. The new model can be used to effectively estimate the field liquid loading statuses of shale gas horizontal wells and choose drainage gas recovery technologies, which considers both the complex wellbore structure and the variation of flowback liquid flow rate in shale gas horizontal wells. The results of the new model fill the gap in existing studies and have a guiding significance for liquid loading prediction in shale gas horizontal wells.","PeriodicalId":11024,"journal":{"name":"Day 4 Wed, December 01, 2021","volume":"74 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 4 Wed, December 01, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/204786-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Current critical flow rate models fail to accurately predict the liquid loading statuses of shale gas horizontal wells. Therefore, a new critical flow rate model for the whole wellbore of shale gas horizontal wells is established. The results of the new model are compared to those of current models through the field case analysis. The new model is based on the dynamic analysis and energy analysis of the deformed liquid-droplet, which takes into account the liquid flow rate, the liquid-droplet deformation and the energy loss caused by the change of buildup rate. The major axis of the maximum stable deformed liquid-droplet is determined based on the energy balance relation. Meanwhile, the suitable drag coefficient equation and surface tension equation applied to shale gas horizontal wells are chosen. Finally, the critical flow rate equation is established and the maximum critical flow rate of the whole wellbore is chosen as the criterion for liquid loading prediction. The precision of liquid loading prediction of the new model is compared to those of the four current models, including Belfroid's model, modified Li's model, liquid film model and modified Wang's model. Field parameters of 29 shale gas horizontal wells are used for the comparison, including parameters of 18 unloaded wells, 2 near loaded-up wells and 9 loaded-up wells. Field case analysis shows that the total precision of liquid loading prediction of the new model is 93.1%, which is higher compared to those of the current four models. The new model can accurately predict the liquid loading statuses of loaded-up wells and near loaded-up wells, while the prediction precision for unloaded wells is high enough for the field application, which is 88.9%. The new model can be used to effectively estimate the field liquid loading statuses of shale gas horizontal wells and choose drainage gas recovery technologies, which considers both the complex wellbore structure and the variation of flowback liquid flow rate in shale gas horizontal wells. The results of the new model fill the gap in existing studies and have a guiding significance for liquid loading prediction in shale gas horizontal wells.