INTERMEDIATE ASSOUAD-LIKE DIMENSIONS FOR MEASURES

K. Hare, K. Hare
{"title":"INTERMEDIATE ASSOUAD-LIKE DIMENSIONS FOR MEASURES","authors":"K. Hare, K. Hare","doi":"10.1142/s0218348x20501431","DOIUrl":null,"url":null,"abstract":"The upper and lower Assouad dimensions of a metric space are local variants of the box dimensions of the space and provide quantitative information about the `thickest' and `thinnest' parts of the set. Less extreme versions of these dimensions for sets have been introduced, including the upper and lower quasi-Assouad dimensions, $\\theta $-Assouad spectrum, and $\\Phi $-dimensions. In this paper, we study the analogue of the upper and lower $\\Phi $-dimensions for measures. We give general properties of such dimensions, as well as more specific results for self-similar measures satisfying various separation properties and discrete measures.","PeriodicalId":8451,"journal":{"name":"arXiv: Classical Analysis and ODEs","volume":"165 1-4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218348x20501431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The upper and lower Assouad dimensions of a metric space are local variants of the box dimensions of the space and provide quantitative information about the `thickest' and `thinnest' parts of the set. Less extreme versions of these dimensions for sets have been introduced, including the upper and lower quasi-Assouad dimensions, $\theta $-Assouad spectrum, and $\Phi $-dimensions. In this paper, we study the analogue of the upper and lower $\Phi $-dimensions for measures. We give general properties of such dimensions, as well as more specific results for self-similar measures satisfying various separation properties and discrete measures.
用于度量的中间类尺度
度量空间的上维和下维是空间的盒维的局部变体,并提供关于集合的“最厚”和“最薄”部分的定量信息。这些维度的不太极端的版本已经被引入集合,包括上和下拟阿苏德维,$\theta $ -阿苏德谱,和$\Phi $ -维。本文研究了测度的上、下$\Phi $ -维的类似性。我们给出了这些维的一般性质,以及满足各种分离性质和离散测度的自相似测度的更具体的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信