Upper bounds for the maximum deviation of the Pearcey process

C. Charlier
{"title":"Upper bounds for the maximum deviation of the Pearcey process","authors":"C. Charlier","doi":"10.1142/s2010326321500398","DOIUrl":null,"url":null,"abstract":"The Pearcey process is a universal point process in random matrix theory and depends on a parameter $\\rho \\in \\mathbb{R}$. Let $N(x)$ be the random variable that counts the number of points in this process that fall in the interval $[-x,x]$. In this note, we establish the following global rigidity upper bound: \\begin{align*} \\lim_{s \\to \\infty}\\mathbb P\\left(\\sup_{x> s}\\left|\\frac{N(x)-\\big( \\frac{3\\sqrt{3}}{4\\pi}x^{\\frac{4}{3}}-\\frac{\\sqrt{3}\\rho}{2\\pi}x^{\\frac{2}{3}} \\big)}{\\log x}\\right| \\leq \\frac{4\\sqrt{2}}{3\\pi} + \\epsilon \\right) = 1, \\end{align*} where $\\epsilon > 0$ is arbitrary. We also obtain a similar upper bound for the maximum deviation of the points, and a central limit theorem for the individual fluctuations. The proof is short and combines a recent result of Dai, Xu and Zhang with another result of Charlier and Claeys.","PeriodicalId":8470,"journal":{"name":"arXiv: Probability","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2010326321500398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The Pearcey process is a universal point process in random matrix theory and depends on a parameter $\rho \in \mathbb{R}$. Let $N(x)$ be the random variable that counts the number of points in this process that fall in the interval $[-x,x]$. In this note, we establish the following global rigidity upper bound: \begin{align*} \lim_{s \to \infty}\mathbb P\left(\sup_{x> s}\left|\frac{N(x)-\big( \frac{3\sqrt{3}}{4\pi}x^{\frac{4}{3}}-\frac{\sqrt{3}\rho}{2\pi}x^{\frac{2}{3}} \big)}{\log x}\right| \leq \frac{4\sqrt{2}}{3\pi} + \epsilon \right) = 1, \end{align*} where $\epsilon > 0$ is arbitrary. We also obtain a similar upper bound for the maximum deviation of the points, and a central limit theorem for the individual fluctuations. The proof is short and combines a recent result of Dai, Xu and Zhang with another result of Charlier and Claeys.
皮尔斯过程最大偏差的上界
皮尔斯过程是随机矩阵理论中的通用点过程,它依赖于一个参数$\rho \in \mathbb{R}$。设$N(x)$为随机变量,用于计算该过程中落在$[-x,x]$区间内的点数。在本注记中,我们建立如下的全局刚性上界:\begin{align*} \lim_{s \to \infty}\mathbb P\left(\sup_{x> s}\left|\frac{N(x)-\big( \frac{3\sqrt{3}}{4\pi}x^{\frac{4}{3}}-\frac{\sqrt{3}\rho}{2\pi}x^{\frac{2}{3}} \big)}{\log x}\right| \leq \frac{4\sqrt{2}}{3\pi} + \epsilon \right) = 1, \end{align*}其中$\epsilon > 0$是任意的。我们还得到了点的最大偏差的一个类似的上界,以及单个波动的一个中心极限定理。这个证明很简短,结合了Dai、Xu和Zhang最近的一个结果和Charlier和Claeys的另一个结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信