Simultaneous Foreground Detection and Classification with Hybrid Features

Jaemyun Kim, Adín Ramírez Rivera, Byungyong Ryu, O. Chae
{"title":"Simultaneous Foreground Detection and Classification with Hybrid Features","authors":"Jaemyun Kim, Adín Ramírez Rivera, Byungyong Ryu, O. Chae","doi":"10.1109/ICCV.2015.378","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a hybrid background model that relies on edge and non-edge features of the image to produce the model. We encode these features into a coding scheme, that we called Local Hybrid Pattern (LHP), that selectively models edges and non-edges features of each pixel. Furthermore, we model each pixel with an adaptive code dictionary to represent the background dynamism, and update it by adding stable codes and discarding unstable ones. We weight each code in the dictionary to enhance its description of the pixel it models. The foreground is detected as the incoming codes that deviate from the dictionary. We can detect (as foreground or background) and classify (as edge or inner region) each pixel simultaneously. We tested our proposed method in existing databases with promising results.","PeriodicalId":6633,"journal":{"name":"2015 IEEE International Conference on Computer Vision (ICCV)","volume":"319 1","pages":"3307-3315"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2015.378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

In this paper, we propose a hybrid background model that relies on edge and non-edge features of the image to produce the model. We encode these features into a coding scheme, that we called Local Hybrid Pattern (LHP), that selectively models edges and non-edges features of each pixel. Furthermore, we model each pixel with an adaptive code dictionary to represent the background dynamism, and update it by adding stable codes and discarding unstable ones. We weight each code in the dictionary to enhance its description of the pixel it models. The foreground is detected as the incoming codes that deviate from the dictionary. We can detect (as foreground or background) and classify (as edge or inner region) each pixel simultaneously. We tested our proposed method in existing databases with promising results.
混合特征的同时前景检测与分类
在本文中,我们提出了一种混合背景模型,它依赖于图像的边缘和非边缘特征来产生模型。我们将这些特征编码成一种编码方案,我们称之为局部混合模式(LHP),该方案选择性地对每个像素的边缘和非边缘特征进行建模。此外,我们使用自适应代码字典对每个像素进行建模,以表示背景动态,并通过添加稳定代码和丢弃不稳定代码来更新它。我们对字典中的每个代码进行加权,以增强其对其建模的像素的描述。前景被检测为偏离字典的传入代码。我们可以同时检测(作为前景或背景)和分类(作为边缘或内部区域)每个像素。我们在现有的数据库中测试了我们提出的方法,结果很有希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信