Periodic solutions to relativistic Kepler problems: a variational approach

A. Boscaggin, W. Dambrosio, D. Papini
{"title":"Periodic solutions to relativistic Kepler problems: a variational approach","authors":"A. Boscaggin, W. Dambrosio, D. Papini","doi":"10.2422/2036-2145.202205_016","DOIUrl":null,"url":null,"abstract":"We study relativistic Kepler problems in the plane. At first, using non-smooth critical point theory, we show that under a general time-periodic external force of gradient type there are two infinite families of T -periodic solutions, parameterized by their winding number around the singularity: the first family is a sequence of local minima, while the second one comes from a mountain pass-type geometry of the action functional. Secondly, we investigate the minimality of the circular and noncircular periodic solutions of the unforced problem, via Morse index theory and level estimates of the action functional.","PeriodicalId":8132,"journal":{"name":"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE","volume":"120 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2422/2036-2145.202205_016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We study relativistic Kepler problems in the plane. At first, using non-smooth critical point theory, we show that under a general time-periodic external force of gradient type there are two infinite families of T -periodic solutions, parameterized by their winding number around the singularity: the first family is a sequence of local minima, while the second one comes from a mountain pass-type geometry of the action functional. Secondly, we investigate the minimality of the circular and noncircular periodic solutions of the unforced problem, via Morse index theory and level estimates of the action functional.
相对论开普勒问题的周期解:变分方法
我们在平面上研究相对论开普勒问题。首先,利用非光滑临界点理论,证明了在一般的梯度型时间周期外力作用下,存在两无穷族的T周期解,并以其绕奇点的圈数参数化:第一族是局部极小值序列,第二族是作用泛函的山口型几何。其次,利用莫尔斯指数理论和作用泛函的水平估计,研究了非强迫问题的圆周期解和非圆周期解的极小性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信