STATIC BENDING ANALYSIS OF FGP L-SHAPE NANOPLATES RESTING ON ELASTIC FOUNDATION USING FEM BASED ON NONLOCAL THEORY

{"title":"STATIC BENDING ANALYSIS OF FGP L-SHAPE NANOPLATES RESTING ON ELASTIC FOUNDATION USING FEM BASED ON NONLOCAL THEORY","authors":"","doi":"10.46242/jstiuh.v60i06.4628","DOIUrl":null,"url":null,"abstract":"This article presents a finite element method for static bending analysis of the functionally graded porous (FGP) L-shape nanoplate resting on the elastic foundation (EF) using the nonlocal elasticity theory. The FGP materials with two-parameter are the volume fraction index (k) and the porosity volume fraction (ξ) in two cases of even and uneven porosity. The EF includes Winkler-stiffness (k1) and Pasternak-stiffness (k2). Some numerical results of the proposed method are compared with those of published works to verify accuracy and reliability. Furthermore, the effects of some elastic foundation factors and material properties of static bending of FGP nanoplates resting on the EF are studied in detail.","PeriodicalId":16979,"journal":{"name":"Journal of Science and Technology - IUH","volume":"66 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Science and Technology - IUH","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46242/jstiuh.v60i06.4628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article presents a finite element method for static bending analysis of the functionally graded porous (FGP) L-shape nanoplate resting on the elastic foundation (EF) using the nonlocal elasticity theory. The FGP materials with two-parameter are the volume fraction index (k) and the porosity volume fraction (ξ) in two cases of even and uneven porosity. The EF includes Winkler-stiffness (k1) and Pasternak-stiffness (k2). Some numerical results of the proposed method are compared with those of published works to verify accuracy and reliability. Furthermore, the effects of some elastic foundation factors and material properties of static bending of FGP nanoplates resting on the EF are studied in detail.
基于非局部理论的FGP l形纳米板弹性地基静弯曲有限元分析
本文采用非局部弹性理论,建立了基于弹性地基的功能梯度多孔l形纳米板的静弯曲有限元分析方法。双参数FGP材料分别是孔隙率均匀和不均匀两种情况下的体积分数指数k和孔隙率体积分数ξ。EF包括温克勒-刚度(k1)和帕斯特纳克-刚度(k2)。将所提方法的一些数值结果与已发表的文献进行了比较,验证了该方法的准确性和可靠性。此外,还详细研究了一些弹性基础因素和材料性能对FGP纳米板静弯曲的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信