{"title":"Braid representatives minimizing the number of simple walks","authors":"H. Boden, Matthew Shimoda","doi":"10.26493/1855-3974.2730.6ac","DOIUrl":null,"url":null,"abstract":"Given a knot, we develop methods for finding the braid representative that minimizes the number of simple walks. Such braids lead to an efficient method for computing the colored Jones polynomial of $K$, following an approach developed by Armond and implemented by Hajij and Levitt. We use this method to compute the colored Jones polynomial in closed form for the knots $5_2, 6_1,$ and $7_2$. The set of simple walks can change under reflection, rotation, and cyclic permutation of the braid, and we prove an invariance property which relates the simple walks of a braid to those of its reflection under cyclic permutation. We study the growth rate of the number of simple walks for families of torus knots. Finally, we present a table of braid words that minimize the number of simple walks for knots up to 13 crossings.","PeriodicalId":8402,"journal":{"name":"Ars Math. Contemp.","volume":"63 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ars Math. Contemp.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26493/1855-3974.2730.6ac","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Given a knot, we develop methods for finding the braid representative that minimizes the number of simple walks. Such braids lead to an efficient method for computing the colored Jones polynomial of $K$, following an approach developed by Armond and implemented by Hajij and Levitt. We use this method to compute the colored Jones polynomial in closed form for the knots $5_2, 6_1,$ and $7_2$. The set of simple walks can change under reflection, rotation, and cyclic permutation of the braid, and we prove an invariance property which relates the simple walks of a braid to those of its reflection under cyclic permutation. We study the growth rate of the number of simple walks for families of torus knots. Finally, we present a table of braid words that minimize the number of simple walks for knots up to 13 crossings.