Role of boundary conditions in quantum computations of scattering observables

R. Briceño, J. V. Guerrero, M. Hansen, A. Sturzu
{"title":"Role of boundary conditions in quantum computations of scattering observables","authors":"R. Briceño, J. V. Guerrero, M. Hansen, A. Sturzu","doi":"10.1103/physrevd.103.014506","DOIUrl":null,"url":null,"abstract":"Quantum computing may offer the opportunity to simulate strongly-interacting field theories, such as quantum chromodynamics, with physical time evolution. This would give access to Minkowski-signature correlators, in contrast to the Euclidean calculations routinely performed at present. However, as with present-day calculations, quantum computation strategies still require the restriction to a finite system size, including a finite, usually periodic, spatial volume. In this work, we investigate the consequences of this in the extraction of hadronic and Compton-like scattering amplitudes. Using the framework presented in Phys. Rev. D101 014509 (2020), we quantify the volume effects for various $1+1$D Minkowski-signature quantities and show that these can be a significant source of systematic uncertainty, even for volumes that are very large by the standards of present-day Euclidean calculations. We then present an improvement strategy, based in the fact that the finite volume has a reduced symmetry. This implies that kinematic points, which yield the same Lorentz invariants, may still be physically distinct in the finite-volume system. As we demonstrate, both numerically and analytically, averaging over such sets can significantly suppress the unwanted volume distortions and improve the extraction of the physical scattering amplitudes.","PeriodicalId":8440,"journal":{"name":"arXiv: High Energy Physics - Lattice","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: High Energy Physics - Lattice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physrevd.103.014506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

Quantum computing may offer the opportunity to simulate strongly-interacting field theories, such as quantum chromodynamics, with physical time evolution. This would give access to Minkowski-signature correlators, in contrast to the Euclidean calculations routinely performed at present. However, as with present-day calculations, quantum computation strategies still require the restriction to a finite system size, including a finite, usually periodic, spatial volume. In this work, we investigate the consequences of this in the extraction of hadronic and Compton-like scattering amplitudes. Using the framework presented in Phys. Rev. D101 014509 (2020), we quantify the volume effects for various $1+1$D Minkowski-signature quantities and show that these can be a significant source of systematic uncertainty, even for volumes that are very large by the standards of present-day Euclidean calculations. We then present an improvement strategy, based in the fact that the finite volume has a reduced symmetry. This implies that kinematic points, which yield the same Lorentz invariants, may still be physically distinct in the finite-volume system. As we demonstrate, both numerically and analytically, averaging over such sets can significantly suppress the unwanted volume distortions and improve the extraction of the physical scattering amplitudes.
边界条件在散射观测量量子计算中的作用
量子计算可能提供模拟强相互作用场论的机会,比如量子色动力学,以及物理时间演化。这将使人们能够使用闵可夫斯基特征相关器,而不是目前通常使用的欧几里得计算。然而,与当今的计算一样,量子计算策略仍然需要限制有限的系统大小,包括有限的,通常是周期性的空间体积。在这项工作中,我们在强子和康普顿散射振幅的提取中研究了这一结果。使用物理学中提出的框架。Rev. D101 014509(2020),我们量化了各种$1+1$D闵可夫斯基特征量的体积效应,并表明这些可能是系统不确定性的重要来源,即使对于按照当今欧几里得计算标准非常大的体积。然后,我们提出了一种改进策略,基于有限体积具有降低对称性的事实。这意味着产生相同洛伦兹不变量的运动点在有限体积系统中可能仍然是物理上不同的。正如我们所证明的,在数值和分析上,对这些集合进行平均可以显著抑制不必要的体积畸变,并改善物理散射振幅的提取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信