Automorphic loops and metabelian groups

Mark Greer, Lee Raney
{"title":"Automorphic loops and metabelian groups","authors":"Mark Greer, Lee Raney","doi":"10.14712/1213-7243.2020.043","DOIUrl":null,"url":null,"abstract":"Given a uniquely 2-divisible group $G$, we study a commutative loop $(G,\\circ)$ which arises as a result of a construction in \\cite{baer}. We investigate some general properties and applications of $\\circ$ and determine a necessary and sufficient condition on $G$ in order for $(G, \\circ)$ to be Moufang. In \\cite{greer14}, it is conjectured that $G$ is metabelian if and only if $(G, \\circ)$ is an automorphic loop. We answer a portion of this conjecture in the affirmative: in particular, we show that if $G$ is a split metabelian group of odd order, then $(G, \\circ)$ is automorphic.","PeriodicalId":8427,"journal":{"name":"arXiv: Group Theory","volume":"308 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14712/1213-7243.2020.043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Given a uniquely 2-divisible group $G$, we study a commutative loop $(G,\circ)$ which arises as a result of a construction in \cite{baer}. We investigate some general properties and applications of $\circ$ and determine a necessary and sufficient condition on $G$ in order for $(G, \circ)$ to be Moufang. In \cite{greer14}, it is conjectured that $G$ is metabelian if and only if $(G, \circ)$ is an automorphic loop. We answer a portion of this conjecture in the affirmative: in particular, we show that if $G$ is a split metabelian group of odd order, then $(G, \circ)$ is automorphic.
自同构回路和亚元群
给定一个唯一的2可除群 $G$,我们研究一个交换环 $(G,\circ)$ 哪个是in的构造的结果 \cite{baer}. 的一些一般性质及其应用 $\circ$ 并确定的充要条件 $G$ 为了 $(G, \circ)$ 成为某芳。在 \cite{greer14},据推测 $G$ 是当且仅当吗 $(G, \circ)$ 是一个自同构循环。我们对这个猜想的一部分作了肯定的回答,特别地,我们证明如果 $G$ 那么,分裂的亚元群是奇阶的吗 $(G, \circ)$ 是自同构的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信