{"title":"Comparison of magnetic circuit design methods of transverse flux reluctance machines","authors":"J. Doering, W. Hofmann","doi":"10.1109/IEMDC.2015.7409207","DOIUrl":null,"url":null,"abstract":"The magnetic circuit of transverse flux reluctance machines causes magnetic flux in three spatial directions. 3-D FEM can be used designing the magnetic circuit, but it requires a relatively long computation time. Therefore 3-D FEM is not useful for an optimization tool. This paper compares four much faster design methods: A simple analytical approach, a magnetic equivalent network, a modified 2-D FEM model, and a simplified and very coarse 3-D FEM. Thereby 36 different motor designs (with different pole pitch, diameter and tooth geometry) and 2 different current-values (one causes strong saturation) are used to evaluate the accuracy and limits of those methods. The deviations of magnetic flux and torque from 3-D FEM results (ANSYS® Maxwell®) are discussed based on statistical probability distributions. The results will show that the equivalent network and the 2-D FEM are not useful for all of the investigated motor designs.","PeriodicalId":6477,"journal":{"name":"2015 IEEE International Electric Machines & Drives Conference (IEMDC)","volume":"125 ","pages":"1158-1164"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Electric Machines & Drives Conference (IEMDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMDC.2015.7409207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The magnetic circuit of transverse flux reluctance machines causes magnetic flux in three spatial directions. 3-D FEM can be used designing the magnetic circuit, but it requires a relatively long computation time. Therefore 3-D FEM is not useful for an optimization tool. This paper compares four much faster design methods: A simple analytical approach, a magnetic equivalent network, a modified 2-D FEM model, and a simplified and very coarse 3-D FEM. Thereby 36 different motor designs (with different pole pitch, diameter and tooth geometry) and 2 different current-values (one causes strong saturation) are used to evaluate the accuracy and limits of those methods. The deviations of magnetic flux and torque from 3-D FEM results (ANSYS® Maxwell®) are discussed based on statistical probability distributions. The results will show that the equivalent network and the 2-D FEM are not useful for all of the investigated motor designs.