Vishaka Gopalan, Chun Wai Wong, Rotem Leshem, Luke Owen, Tuulia Vallius, Yingxiao Shi, Yuhong Jiang, Eva Pérez-Guijarro, Emily Wu, Sung Chin, Jessica Ebersole, Cari Smith, Antonella Sassano, Maira Alves Constantino, Michael J Haley, Ferenc Livak, R Mark Simpson, Chi-Ping Day, Adam Hurlstone, Sridhar Hannenhalli, Glenn Merlino, Kerrie L Marie
{"title":"Transitory Schwann Cell Precursor and hybrid states underpin melanoma therapy resistance and metastasis.","authors":"Vishaka Gopalan, Chun Wai Wong, Rotem Leshem, Luke Owen, Tuulia Vallius, Yingxiao Shi, Yuhong Jiang, Eva Pérez-Guijarro, Emily Wu, Sung Chin, Jessica Ebersole, Cari Smith, Antonella Sassano, Maira Alves Constantino, Michael J Haley, Ferenc Livak, R Mark Simpson, Chi-Ping Day, Adam Hurlstone, Sridhar Hannenhalli, Glenn Merlino, Kerrie L Marie","doi":"10.1101/2022.10.14.512297","DOIUrl":null,"url":null,"abstract":"<p><p>Melanoma plasticity, driven by phenotype state switching, underlies clinically relevant traits such as metastasis and therapy resistance. As melanoma progression is thought to recapitulate aspects of neural crest cell (NCC) development, understanding embryonic melanocyte specification and lineage fate decisions of closely related NCCs may illuminate the pathways co-opted during disease evolution. Here, we use a mouse model to isolate and sequence Dopachrome tautomerase (Dct) expressing NCCs, the precursors of melanocytes, at two key developmental stages. We classify these lineages and devise a Developmental Gene Module (DGM) scoring system to interrogate lineage state switching in melanoma samples. In bulk transcriptomes, activation of DGMs representing embryonic Schwann Cell Precursors (SCPs)-multipotent stem cells-in patient tumors predicts poor response to immune checkpoint inhibitors (ICI). Co-activation of SCP and Mesenchymal-like (Mes.) modules further correlates with resistance to MAPK inhibitors. Notably, single-cell analyses reveal that melanoma cells can simultaneously express multiple DGMs, forming \"hybrid\" states. Cells in a hybrid Neural/SCP state are enriched in early metastasis and ICI-resistant tumors and are insensitive to inflammatory stimuli. We demonstrate that targeting <i>Hdac2</i>, a histone deacetylase associated with this Neural/SCP hybrid state, promotes a mesenchymal-like state switch, remodels the tumor microenvironment, and sensitizes melanoma cells to TNFα and tumors to ICI therapy. Our methodology thus reveals dynamic patterns of lineage state switching correlated with melanoma tumor evolution to drive insight into new therapeutic targets.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":"9 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12330744/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2022.10.14.512297","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Melanoma plasticity, driven by phenotype state switching, underlies clinically relevant traits such as metastasis and therapy resistance. As melanoma progression is thought to recapitulate aspects of neural crest cell (NCC) development, understanding embryonic melanocyte specification and lineage fate decisions of closely related NCCs may illuminate the pathways co-opted during disease evolution. Here, we use a mouse model to isolate and sequence Dopachrome tautomerase (Dct) expressing NCCs, the precursors of melanocytes, at two key developmental stages. We classify these lineages and devise a Developmental Gene Module (DGM) scoring system to interrogate lineage state switching in melanoma samples. In bulk transcriptomes, activation of DGMs representing embryonic Schwann Cell Precursors (SCPs)-multipotent stem cells-in patient tumors predicts poor response to immune checkpoint inhibitors (ICI). Co-activation of SCP and Mesenchymal-like (Mes.) modules further correlates with resistance to MAPK inhibitors. Notably, single-cell analyses reveal that melanoma cells can simultaneously express multiple DGMs, forming "hybrid" states. Cells in a hybrid Neural/SCP state are enriched in early metastasis and ICI-resistant tumors and are insensitive to inflammatory stimuli. We demonstrate that targeting Hdac2, a histone deacetylase associated with this Neural/SCP hybrid state, promotes a mesenchymal-like state switch, remodels the tumor microenvironment, and sensitizes melanoma cells to TNFα and tumors to ICI therapy. Our methodology thus reveals dynamic patterns of lineage state switching correlated with melanoma tumor evolution to drive insight into new therapeutic targets.