Trading Strategies in Bulk Shipping: the Application of Artificial Neural Networks

Heesung Yun, Sangseop Lim, Kihwan Lee
{"title":"Trading Strategies in Bulk Shipping: the Application of Artificial Neural Networks","authors":"Heesung Yun, Sangseop Lim, Kihwan Lee","doi":"10.5394/KINPR.2016.40.5.337","DOIUrl":null,"url":null,"abstract":":Thecoredecisionsofbulkshippingbusinessescanbesummarizedasthetimingandthechoiceofperiodforwhichcarrying capacityistraded.Inparticular,frequentdecisionstotradefreighteitherwithrepeatedspottransactionsorwithaone-offlong-term dealcriticallyimpactbusinessperformance.Eventhoughavarietyoffreighttradingstrategiescanbeemployedtofacilitatethedecisions, charteringpractitionershavenotbeenactiveinutilizingthesestrategies,andacademicresearchhasrarelyproposedapplicablesolutions. The specificpropertiesoffreightasatradable commodityare notproperlyreflected inexisting studies, and limitationshave been reportedintheirapplicationtotherealworld.Thisresearchfocusedontheestablishmentofapplicablefreighttradingstrategiesbytaking intoaccounttwopropertiesoffreight:timeperishabilityandterm-dependantpricing.Inadditiontotraditionaltradingstrategies,artificial neuralnetworkswereappliedforthefirsttimetothetestoffreighttradingstrategies.Theperformancesofthetradingstrategieswere measuredandcomparedtoproducearemarkableoutperformanceoftheANN.Thisresearchisexpectedtomakeasignificantcontribution tocharteringpracticesbyenhancingthequalityofcharteringdecisionsandeventuallyenablingtheeffectivemanagementoffreightrate risk.Inadditiontomethodologicalexpansion,theresultwillproposeawaytoapproachthecontroversialissueoffreightmarketefficiency.","PeriodicalId":16242,"journal":{"name":"Journal of Korean navigation and port research","volume":"85 1","pages":"337-343"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Korean navigation and port research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5394/KINPR.2016.40.5.337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

:Thecoredecisionsofbulkshippingbusinessescanbesummarizedasthetimingandthechoiceofperiodforwhichcarrying capacityistraded.Inparticular,frequentdecisionstotradefreighteitherwithrepeatedspottransactionsorwithaone-offlong-term dealcriticallyimpactbusinessperformance.Eventhoughavarietyoffreighttradingstrategiescanbeemployedtofacilitatethedecisions, charteringpractitionershavenotbeenactiveinutilizingthesestrategies,andacademicresearchhasrarelyproposedapplicablesolutions. The specificpropertiesoffreightasatradable commodityare notproperlyreflected inexisting studies, and limitationshave been reportedintheirapplicationtotherealworld.Thisresearchfocusedontheestablishmentofapplicablefreighttradingstrategiesbytaking intoaccounttwopropertiesoffreight:timeperishabilityandterm-dependantpricing.Inadditiontotraditionaltradingstrategies,artificial neuralnetworkswereappliedforthefirsttimetothetestoffreighttradingstrategies.Theperformancesofthetradingstrategieswere measuredandcomparedtoproducearemarkableoutperformanceoftheANN.Thisresearchisexpectedtomakeasignificantcontribution tocharteringpracticesbyenhancingthequalityofcharteringdecisionsandeventuallyenablingtheeffectivemanagementoffreightrate risk.Inadditiontomethodologicalexpansion,theresultwillproposeawaytoapproachthecontroversialissueoffreightmarketefficiency.
散货航运交易策略:人工神经网络的应用
: Thecoredecisionsofbulkshippingbusinessescanbesummarizedasthetimingandthechoiceofperiodforwhichcarrying capacityistraded。文章frequentdecisionstotradefreighteitherwithrepeatedspottransactionsorwithaone-offlong-term dealcriticallyimpactbusinessperformance。Eventhoughavarietyoffreighttradingstrategiescanbeemployedtofacilitatethedecisions、charteringpractitionershavenotbeenactiveinutilizingthesestrategies andacademicresearchhasrarelyproposedapplicablesolutions。现有的研究没有很好地反映出可交易商品的特定属性,并且据报道,它们在现实世界中的应用存在局限性。Thisresearchfocusedontheestablishmentofapplicablefreighttradingstrategiesbytaking intoaccounttwopropertiesoffreight: timeperishabilityandterm-dependantpricing。Inadditiontotraditionaltradingstrategies、人工neuralnetworkswereappliedforthefirsttimetothetestoffreighttradingstrategies。Theperformancesofthetradingstrategieswere measuredandcomparedtoproducearemarkableoutperformanceoftheANN。本研究可望对租船实务作出重大贡献,提高租船决策的品质,并最终实现对货运风险的有效管理。除了方法上的拓展外,本研究结果也将为解决货运市场效率这一有争议的问题提供一条途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信