{"title":"Trading Strategies in Bulk Shipping: the Application of Artificial Neural Networks","authors":"Heesung Yun, Sangseop Lim, Kihwan Lee","doi":"10.5394/KINPR.2016.40.5.337","DOIUrl":null,"url":null,"abstract":":Thecoredecisionsofbulkshippingbusinessescanbesummarizedasthetimingandthechoiceofperiodforwhichcarrying capacityistraded.Inparticular,frequentdecisionstotradefreighteitherwithrepeatedspottransactionsorwithaone-offlong-term dealcriticallyimpactbusinessperformance.Eventhoughavarietyoffreighttradingstrategiescanbeemployedtofacilitatethedecisions, charteringpractitionershavenotbeenactiveinutilizingthesestrategies,andacademicresearchhasrarelyproposedapplicablesolutions. The specificpropertiesoffreightasatradable commodityare notproperlyreflected inexisting studies, and limitationshave been reportedintheirapplicationtotherealworld.Thisresearchfocusedontheestablishmentofapplicablefreighttradingstrategiesbytaking intoaccounttwopropertiesoffreight:timeperishabilityandterm-dependantpricing.Inadditiontotraditionaltradingstrategies,artificial neuralnetworkswereappliedforthefirsttimetothetestoffreighttradingstrategies.Theperformancesofthetradingstrategieswere measuredandcomparedtoproducearemarkableoutperformanceoftheANN.Thisresearchisexpectedtomakeasignificantcontribution tocharteringpracticesbyenhancingthequalityofcharteringdecisionsandeventuallyenablingtheeffectivemanagementoffreightrate risk.Inadditiontomethodologicalexpansion,theresultwillproposeawaytoapproachthecontroversialissueoffreightmarketefficiency.","PeriodicalId":16242,"journal":{"name":"Journal of Korean navigation and port research","volume":"85 1","pages":"337-343"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Korean navigation and port research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5394/KINPR.2016.40.5.337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
:Thecoredecisionsofbulkshippingbusinessescanbesummarizedasthetimingandthechoiceofperiodforwhichcarrying capacityistraded.Inparticular,frequentdecisionstotradefreighteitherwithrepeatedspottransactionsorwithaone-offlong-term dealcriticallyimpactbusinessperformance.Eventhoughavarietyoffreighttradingstrategiescanbeemployedtofacilitatethedecisions, charteringpractitionershavenotbeenactiveinutilizingthesestrategies,andacademicresearchhasrarelyproposedapplicablesolutions. The specificpropertiesoffreightasatradable commodityare notproperlyreflected inexisting studies, and limitationshave been reportedintheirapplicationtotherealworld.Thisresearchfocusedontheestablishmentofapplicablefreighttradingstrategiesbytaking intoaccounttwopropertiesoffreight:timeperishabilityandterm-dependantpricing.Inadditiontotraditionaltradingstrategies,artificial neuralnetworkswereappliedforthefirsttimetothetestoffreighttradingstrategies.Theperformancesofthetradingstrategieswere measuredandcomparedtoproducearemarkableoutperformanceoftheANN.Thisresearchisexpectedtomakeasignificantcontribution tocharteringpracticesbyenhancingthequalityofcharteringdecisionsandeventuallyenablingtheeffectivemanagementoffreightrate risk.Inadditiontomethodologicalexpansion,theresultwillproposeawaytoapproachthecontroversialissueoffreightmarketefficiency.