The High Pressure Expander Process Technology for LNG Applications

Liu Yijun, Fritz Pierre, A. K. Nagavarapu
{"title":"The High Pressure Expander Process Technology for LNG Applications","authors":"Liu Yijun, Fritz Pierre, A. K. Nagavarapu","doi":"10.4043/29379-MS","DOIUrl":null,"url":null,"abstract":"Recent focus of the LNG industry has been on developing technologies to decrease capital investment and increase operational efficiency to reduce overall cost of supply. Pursuing this target, a novel, compact, and high efficiency expander-based liquefaction technology has been developed to monetize gas assets. The technology uses a single phase methane refrigerant stream operating at distinguishingly high pressures followed by a single phase nitrogen refrigerant stream. Such a configuration dramatically improves energy efficiency (by 10 - 25 %) and train production capacity (by 100 - 150%) compared to other expander-based technologies, while maintaining process simplicity, lower equipment count, and lighter weight relative to mixed-refrigerant based liquefaction processes. Furthermore, integrating with a front-end heavy hydrocarbon removal unit, the technology also enables standardized liquefaction train design for a wide range of gas composition around a nominal train capacity. The standard design is well suited for parallel train configurations and phased development philosophy to drive design and execution efficiency. In addition to CAPEX savings, the weight and footprint savings are beneficial in locations where space is at a premium. While the technology platform is broadly applicable for both offshore and onshore opportunities, this paper will focus on a recent offshore LNG project which showcased the technology's significant benefit in CAPEX, weight, footprint, personnel safety, insensitivity to ocean motion, refrigerant handling and many other operation advantages. It even enabled production capacity increase from 3.5 to 4.6 on the same circular hull floating facility, proving itself as a game changer to reduce cost of supply of this liquefaction project.","PeriodicalId":10968,"journal":{"name":"Day 3 Wed, May 08, 2019","volume":"293 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Wed, May 08, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4043/29379-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recent focus of the LNG industry has been on developing technologies to decrease capital investment and increase operational efficiency to reduce overall cost of supply. Pursuing this target, a novel, compact, and high efficiency expander-based liquefaction technology has been developed to monetize gas assets. The technology uses a single phase methane refrigerant stream operating at distinguishingly high pressures followed by a single phase nitrogen refrigerant stream. Such a configuration dramatically improves energy efficiency (by 10 - 25 %) and train production capacity (by 100 - 150%) compared to other expander-based technologies, while maintaining process simplicity, lower equipment count, and lighter weight relative to mixed-refrigerant based liquefaction processes. Furthermore, integrating with a front-end heavy hydrocarbon removal unit, the technology also enables standardized liquefaction train design for a wide range of gas composition around a nominal train capacity. The standard design is well suited for parallel train configurations and phased development philosophy to drive design and execution efficiency. In addition to CAPEX savings, the weight and footprint savings are beneficial in locations where space is at a premium. While the technology platform is broadly applicable for both offshore and onshore opportunities, this paper will focus on a recent offshore LNG project which showcased the technology's significant benefit in CAPEX, weight, footprint, personnel safety, insensitivity to ocean motion, refrigerant handling and many other operation advantages. It even enabled production capacity increase from 3.5 to 4.6 on the same circular hull floating facility, proving itself as a game changer to reduce cost of supply of this liquefaction project.
LNG高压膨胀工艺技术
LNG行业最近的重点是开发技术,以减少资本投资,提高运营效率,降低总体供应成本。为了实现这一目标,一种新颖、紧凑、高效的基于膨胀器的液化技术已经被开发出来,以实现天然气资产的货币化。该技术使用在高压下运行的单相甲烷制冷剂流,然后是单相氮气制冷剂流。与其他基于膨胀器的技术相比,这种配置显著提高了能源效率(提高了10 - 25%)和培训生产能力(提高了100 - 150%),同时相对于基于混合制冷剂的液化工艺,保持了工艺简单、设备数量少、重量轻的特点。此外,与前端重烃去除装置相结合,该技术还可以在额定列车容量范围内实现标准化的液化列车设计,适用于各种气体成分。标准设计非常适合平行列车配置和分阶段开发理念,以提高设计和执行效率。除了节省资本支出外,重量和占地面积的节省在空间稀缺的地方也是有益的。虽然该技术平台广泛适用于海上和陆上机遇,但本文将重点介绍最近的海上液化天然气项目,该项目展示了该技术在资本支出、重量、占地面积、人员安全、对海洋运动不敏感、制冷剂处理和许多其他操作优势方面的显着优势。它甚至使相同的圆形船体浮式设施的生产能力从3.5增加到4.6,证明自己是降低液化项目供应成本的游戏规则改变者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信