General theory of elastic moderation in infinite homogeneous media

Ashok Sengupta, G. Srikantiah
{"title":"General theory of elastic moderation in infinite homogeneous media","authors":"Ashok Sengupta,&nbsp;G. Srikantiah","doi":"10.1016/0022-3107(73)90067-1","DOIUrl":null,"url":null,"abstract":"<div><p>A formula that allows the exact determination of the non-trivial root <span><math><mtext>ξ</mtext><msup><mi></mi><mn>∗</mn></msup></math></span> arising in the solution <span><span><span><math><mtext>q(u) = ξ</mtext><msup><mi></mi><mn>∗</mn></msup><mtext>(u)F(u)</mtext></math></span></span></span> to the slowing down equation is given. A general approximation scheme for obtaining approximations to <span><math><mtext>ξ</mtext><msup><mi></mi><mn>∗</mn></msup></math></span> is derived. The classical approximations of Fermi and of Greuling and Goertzel are the two lowest order approximations of this scheme. A method of consistent approximation, as opposed to the usual inconsistent method of which the Fermi and GG are particular examples, is also introduced. It is shown that this consistent approach greatly improves on the inconsistent one. A new physical interpretation of <span><math><mtext>ξ</mtext><msup><mi></mi><mn>∗</mn></msup></math></span> is discussed.</p></div>","PeriodicalId":100811,"journal":{"name":"Journal of Nuclear Energy","volume":"27 7","pages":"Pages 511-517"},"PeriodicalIF":0.0000,"publicationDate":"1973-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0022-3107(73)90067-1","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0022310773900671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

A formula that allows the exact determination of the non-trivial root ξ arising in the solution q(u) = ξ(u)F(u) to the slowing down equation is given. A general approximation scheme for obtaining approximations to ξ is derived. The classical approximations of Fermi and of Greuling and Goertzel are the two lowest order approximations of this scheme. A method of consistent approximation, as opposed to the usual inconsistent method of which the Fermi and GG are particular examples, is also introduced. It is shown that this consistent approach greatly improves on the inconsistent one. A new physical interpretation of ξ is discussed.

无限均质介质中弹性调节的一般理论
给出了一个公式,该公式允许精确地确定在减速方程的解q(u) = ξ∗(u)F(u)中产生的非平凡根ξ∗。导出了一个一般近似格式,用于获得ξ∗的近似。Fermi的经典近似和Greuling和Goertzel的经典近似是该格式的两个最低阶近似。本文还介绍了一种与通常的不一致近似方法相反的一致近似方法,以费米和GG为例。结果表明,这种一致性方法比非一致性方法有很大的改进。讨论了ξ *的一种新的物理解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信