Superconducting micro-resonator arrays with ideal frequency spacing and extremely low frequency collision rate

X. Liu, W. Guo, Y. Wang, M. Dai, L. Wei, B. Dober, C. Mckenney, G. Hilton, J. Hubmayr, J. Austermann, J. Ullom, J. Gao, M. Vissers
{"title":"Superconducting micro-resonator arrays with ideal frequency spacing and extremely low frequency collision rate","authors":"X. Liu, W. Guo, Y. Wang, M. Dai, L. Wei, B. Dober, C. Mckenney, G. Hilton, J. Hubmayr, J. Austermann, J. Ullom, J. Gao, M. Vissers","doi":"10.1063/1.5016190","DOIUrl":null,"url":null,"abstract":"We present a wafer trimming technique for producing superconducting micro-resonator arrays with highly uniform frequency spacing. With the light-emitting diode (LED) mapper technique demonstrated previously, we first map the measured resonance frequencies to the physical resonators. Then, we fine-tune each resonator's frequency by lithographically trimming a small length, calculated from the deviation of the measured frequency from its design value, from the interdigitated capacitor. We demonstrate this technique on a 127-resonator array made of titanium-nitride (TiN) and show that the uniformity of frequency spacing is greatly improved. The array yield in terms of frequency collisions improves from 84% to 97%, while the quality factors and noise properties are unaffected. The wafer trimming technique provides an easy-to-implement tool to improve the yield and multiplexing density of large resonator arrays, which is important for various applications in photon detection and quantum computing.","PeriodicalId":8827,"journal":{"name":"arXiv: Instrumentation and Detectors","volume":"33 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Instrumentation and Detectors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.5016190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

We present a wafer trimming technique for producing superconducting micro-resonator arrays with highly uniform frequency spacing. With the light-emitting diode (LED) mapper technique demonstrated previously, we first map the measured resonance frequencies to the physical resonators. Then, we fine-tune each resonator's frequency by lithographically trimming a small length, calculated from the deviation of the measured frequency from its design value, from the interdigitated capacitor. We demonstrate this technique on a 127-resonator array made of titanium-nitride (TiN) and show that the uniformity of frequency spacing is greatly improved. The array yield in terms of frequency collisions improves from 84% to 97%, while the quality factors and noise properties are unaffected. The wafer trimming technique provides an easy-to-implement tool to improve the yield and multiplexing density of large resonator arrays, which is important for various applications in photon detection and quantum computing.
具有理想频率间隔和极低频率碰撞率的超导微谐振器阵列
提出了一种用于制造频率间距高度均匀的超导微谐振器阵列的晶圆修整技术。利用先前演示的发光二极管(LED)映射技术,我们首先将测量的谐振频率映射到物理谐振器上。然后,我们通过光刻修剪小长度来微调每个谐振器的频率,从测量频率与其设计值的偏差中计算,从交叉电容。我们在一个由氮化钛(TiN)制成的127谐振器阵列上演示了该技术,并表明频率间距的均匀性得到了极大的改善。在频率碰撞方面,阵列的良率从84%提高到97%,而质量因子和噪声特性不受影响。晶圆修整技术提供了一种易于实现的工具来提高大型谐振器阵列的良率和多路复用密度,这对于光子探测和量子计算中的各种应用非常重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信