Pseudotime Ordering Single-Cell Transcriptomic of β Cells Pancreatic Islets in Health and Type 2 Diabetes.

IF 3.7 Q2 GENETICS & HEREDITY
Kaixuan Bao, Zhicheng Cui, Hui Wang, Hui Xiao, Ting Li, Xingxing Kong, Tiemin Liu
{"title":"Pseudotime Ordering Single-Cell Transcriptomic of β Cells Pancreatic Islets in Health and Type 2 Diabetes.","authors":"Kaixuan Bao,&nbsp;Zhicheng Cui,&nbsp;Hui Wang,&nbsp;Hui Xiao,&nbsp;Ting Li,&nbsp;Xingxing Kong,&nbsp;Tiemin Liu","doi":"10.1007/s43657-021-00024-z","DOIUrl":null,"url":null,"abstract":"<p><p>β cells are defined by the ability to produce and secret insulin. Recent studies have evaluated that human pancreatic β cells are heterogeneous and demonstrated the transcript alterations of β cell subpopulation in diabetes. Single-cell RNA sequence (scRNA-seq) analysis helps us to refine the cell types signatures and understand the role of the β cells during metabolic challenges and diseases. Here, we construct the pseudotime trajectory of β cells from publicly available scRNA-seq data in health and type 2 diabetes (T2D) based on highly dispersed and highly expressed genes using Monocle2. We identified three major states including 1) Normal branch, 2) Obesity-like branch and 3) T2D-like branch based on biomarker genes and genes that give rise to bifurcation in the trajectory. β cell function-maintain-related genes, insulin expression-related genes, and T2D-related genes enriched in three branches, respectively. Continuous pseudotime spectrum might suggest that β cells transition among different states. The application of pseudotime analysis is conducted to clarify the different cell states, providing novel insights into the pathology of β cells in T2D.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material is available at 10.1007/s43657-021-00024-z.</p>","PeriodicalId":74435,"journal":{"name":"Phenomics (Cham, Switzerland)","volume":"1 5","pages":"199-210"},"PeriodicalIF":3.7000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9590480/pdf/43657_2021_Article_24.pdf","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phenomics (Cham, Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s43657-021-00024-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 4

Abstract

β cells are defined by the ability to produce and secret insulin. Recent studies have evaluated that human pancreatic β cells are heterogeneous and demonstrated the transcript alterations of β cell subpopulation in diabetes. Single-cell RNA sequence (scRNA-seq) analysis helps us to refine the cell types signatures and understand the role of the β cells during metabolic challenges and diseases. Here, we construct the pseudotime trajectory of β cells from publicly available scRNA-seq data in health and type 2 diabetes (T2D) based on highly dispersed and highly expressed genes using Monocle2. We identified three major states including 1) Normal branch, 2) Obesity-like branch and 3) T2D-like branch based on biomarker genes and genes that give rise to bifurcation in the trajectory. β cell function-maintain-related genes, insulin expression-related genes, and T2D-related genes enriched in three branches, respectively. Continuous pseudotime spectrum might suggest that β cells transition among different states. The application of pseudotime analysis is conducted to clarify the different cell states, providing novel insights into the pathology of β cells in T2D.

Supplementary information: The online version contains supplementary material is available at 10.1007/s43657-021-00024-z.

Abstract Image

健康和2型糖尿病患者胰岛β细胞的伪时间顺序单细胞转录组学研究
β细胞的定义是产生和分泌胰岛素的能力。最近的研究已经评估了人类胰腺β细胞是异质的,并证明了β细胞亚群在糖尿病中的转录改变。单细胞RNA序列(scRNA-seq)分析有助于我们完善细胞类型特征,并了解β细胞在代谢挑战和疾病中的作用。在这里,我们使用Monocle2基于高度分散和高表达的基因,从公开可用的健康和2型糖尿病(T2D)患者的scRNA-seq数据构建了β细胞的伪时间轨迹。基于生物标志物基因和导致轨迹分叉的基因,我们确定了三种主要状态,包括1)正常分支,2)肥胖样分支和3)t2d样分支。β细胞功能维持相关基因、胰岛素表达相关基因和t2d相关基因分别富集于三个分支。连续的伪时间谱可能提示β细胞在不同状态间转换。应用伪时间分析来澄清不同的细胞状态,为T2D中β细胞的病理提供新的见解。补充信息:在线版本包含补充资料,下载地址:10.1007/s43657-021-00024-z。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信