Gyrokinetic theory of slab universal modes and the non-existence of the Gradient Drift Coupling (GDC) instability

B. Rogers, B. Zhu, M. Francisquez
{"title":"Gyrokinetic theory of slab universal modes and the non-existence of the Gradient Drift Coupling (GDC) instability","authors":"B. Rogers, B. Zhu, M. Francisquez","doi":"10.1063/1.5024748","DOIUrl":null,"url":null,"abstract":"A gyrokinetic linear stability analysis of a collisionless slab geometry in the local approximation is presented. We focus on $k_\\parallel=0$ universal (or entropy) modes driven by plasma gradients at small and large plasma $\\beta$. These are small scale non-MHD instabilities with growth rates that typically peak near $k_\\perp\\rho_i\\sim 1$ and vanish in the long wavelength $k_\\perp\\to 0$ limit. This work also discusses a mode known as the Gradient Drift Coupling (GDC) instability previously reported in the gyrokinetic literature, which has a finite growth rate $\\gamma= \\sqrt{\\beta/[2(1+\\beta)]} C_s/|L_p|$ with $C_s^2=p_0/\\rho_0$ for $k_\\perp\\to 0$ and is universally unstable for $1/L_p\\neq 0$. We show the GDC instability is a spurious, unphysical artifact that erroneously arises due to the failure to respect the total equilibrium pressure balance $p_0+B_0^2/(8\\pi)=\\text{constant}$, which renders the assumption $B_0'=0$ inconsistent if $p_0'\\neq 0$.","PeriodicalId":8461,"journal":{"name":"arXiv: Plasma Physics","volume":"181 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Plasma Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.5024748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

A gyrokinetic linear stability analysis of a collisionless slab geometry in the local approximation is presented. We focus on $k_\parallel=0$ universal (or entropy) modes driven by plasma gradients at small and large plasma $\beta$. These are small scale non-MHD instabilities with growth rates that typically peak near $k_\perp\rho_i\sim 1$ and vanish in the long wavelength $k_\perp\to 0$ limit. This work also discusses a mode known as the Gradient Drift Coupling (GDC) instability previously reported in the gyrokinetic literature, which has a finite growth rate $\gamma= \sqrt{\beta/[2(1+\beta)]} C_s/|L_p|$ with $C_s^2=p_0/\rho_0$ for $k_\perp\to 0$ and is universally unstable for $1/L_p\neq 0$. We show the GDC instability is a spurious, unphysical artifact that erroneously arises due to the failure to respect the total equilibrium pressure balance $p_0+B_0^2/(8\pi)=\text{constant}$, which renders the assumption $B_0'=0$ inconsistent if $p_0'\neq 0$.
平板普遍模态的陀螺动力学理论与梯度漂移耦合(GDC)不稳定性
给出了局部近似下无碰撞板坯几何结构的陀螺动力学线性稳定性分析。我们专注于$k_\parallel=0$普遍(或熵)模式驱动的等离子体梯度在小和大等离子体$\beta$。这些是小规模的非mhd不稳定性,其增长率通常在$k_\perp\rho_i\sim 1$附近达到峰值,并在长波$k_\perp\to 0$极限时消失。这项工作还讨论了一种称为梯度漂移耦合(GDC)不稳定性的模式,以前在陀螺动力学文献中报道过,它具有有限的增长率$\gamma= \sqrt{\beta/[2(1+\beta)]} C_s/|L_p|$与$C_s^2=p_0/\rho_0$对于$k_\perp\to 0$和普遍不稳定的$1/L_p\neq 0$。我们表明GDC不稳定性是一个虚假的,非物理的工件,由于未能尊重总平衡压力平衡$p_0+B_0^2/(8\pi)=\text{constant}$而错误地产生,这使得假设$B_0'=0$不一致,如果$p_0'\neq 0$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信