The analysis of the dynamic behavior of the electro-optical bistable systems

Zhang Sheng-hai, Yang Hua, Zhao Zhen-Hua
{"title":"The analysis of the dynamic behavior of the electro-optical bistable systems","authors":"Zhang Sheng-hai, Yang Hua, Zhao Zhen-Hua","doi":"10.1080/21642583.2014.901928","DOIUrl":null,"url":null,"abstract":"In this paper, research on the dynamic behaviors of the electro-optical bistable system, especially for its chaotic dynamic behavior, was carried out. The dynamic equation is resolved by the method of the diagrammatized mode. The state of the electro-optical bistable system with changing system parameter is analyzed in detail, and the concrete positions of the bifurcation points are calculated. The system can generate tangent bifurcation and period double bifurcation as the systemic parameter changes, thus the system can generate chaos through period double bifurcation; on the other hand, the system can generate intermittent chaos.","PeriodicalId":22127,"journal":{"name":"Systems Science & Control Engineering: An Open Access Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems Science & Control Engineering: An Open Access Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21642583.2014.901928","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, research on the dynamic behaviors of the electro-optical bistable system, especially for its chaotic dynamic behavior, was carried out. The dynamic equation is resolved by the method of the diagrammatized mode. The state of the electro-optical bistable system with changing system parameter is analyzed in detail, and the concrete positions of the bifurcation points are calculated. The system can generate tangent bifurcation and period double bifurcation as the systemic parameter changes, thus the system can generate chaos through period double bifurcation; on the other hand, the system can generate intermittent chaos.
光电双稳系统的动态特性分析
本文对光电双稳系统的动力学行为进行了研究,特别是对其混沌动力学行为进行了研究。采用图化方法求解动力学方程。详细分析了随系统参数变化的光电双稳系统的状态,并计算了分岔点的具体位置。随着系统参数的变化,系统可以产生切线分岔和周期双分岔,从而通过周期双分岔产生混沌;另一方面,系统会产生间歇性混乱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信