Demonstration of a frequency-agile RF source configuration using bistable optically controlled semiconductor switches (BOSS)

D. Stoudt, M. A. Richardson, S. Moran
{"title":"Demonstration of a frequency-agile RF source configuration using bistable optically controlled semiconductor switches (BOSS)","authors":"D. Stoudt, M. A. Richardson, S. Moran","doi":"10.1109/PPC.1995.596506","DOIUrl":null,"url":null,"abstract":"The processes of persistent photoconductivity followed by photo-quenching have been demonstrated at megawatt power levels in copper-compensated, silicon-doped, semi-insulating gallium arsenide. These processes allow a switch to be developed that can be closed by the application of one laser pulse (/spl lambda/=1.06 /spl mu/m) and opened by the application of a second laser pulse with a wavelength equal to twice that of the first laser (/spl lambda/=2.13 /spl mu/m). The opening phase requires a sufficient concentration of recombination centers (RC) in the material for opening to occur in the subnanosecond regime. These RCs are generated in the bulk GaAs material by fast-neutron irradiation (/spl sim/1-MeV). Neutron-irradiated bistable optically controlled semiconductor switch (BOSS) devices have been opened against a rising average electric field of about 36 kV/cm (18 kV) in a time less than one nanosecond while operating at a repetition rate, within a two-pulse burst, of about 1 GHz. The ability to modify the frequency content of the electrical pulses, by varying the time separation, is demonstrated. Results demonstrating the operation of BOSS devices in a frequency-agile RF source configuration are also discussed.","PeriodicalId":11163,"journal":{"name":"Digest of Technical Papers. Tenth IEEE International Pulsed Power Conference","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1995-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digest of Technical Papers. Tenth IEEE International Pulsed Power Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PPC.1995.596506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

The processes of persistent photoconductivity followed by photo-quenching have been demonstrated at megawatt power levels in copper-compensated, silicon-doped, semi-insulating gallium arsenide. These processes allow a switch to be developed that can be closed by the application of one laser pulse (/spl lambda/=1.06 /spl mu/m) and opened by the application of a second laser pulse with a wavelength equal to twice that of the first laser (/spl lambda/=2.13 /spl mu/m). The opening phase requires a sufficient concentration of recombination centers (RC) in the material for opening to occur in the subnanosecond regime. These RCs are generated in the bulk GaAs material by fast-neutron irradiation (/spl sim/1-MeV). Neutron-irradiated bistable optically controlled semiconductor switch (BOSS) devices have been opened against a rising average electric field of about 36 kV/cm (18 kV) in a time less than one nanosecond while operating at a repetition rate, within a two-pulse burst, of about 1 GHz. The ability to modify the frequency content of the electrical pulses, by varying the time separation, is demonstrated. Results demonstrating the operation of BOSS devices in a frequency-agile RF source configuration are also discussed.
使用双稳光控半导体开关(BOSS)的频率敏捷射频源配置演示
在铜补偿、硅掺杂、半绝缘的砷化镓中,持续的光电导率和光猝灭的过程已经在兆瓦级的功率水平上得到了证明。这些过程允许开发一个开关,该开关可以通过应用一个激光脉冲(/spl lambda/=1.06 /spl mu/m)关闭,并通过应用波长等于第一个激光的两倍的第二个激光脉冲(/spl lambda/=2.13 /spl mu/m)打开。打开阶段需要材料中重组中心(RC)的足够浓度才能在亚纳秒状态下打开。这些rc是在块状GaAs材料中通过快中子辐照(/spl sim/1-MeV)产生的。中子辐照的双稳态光控半导体开关(BOSS)器件在不到一纳秒的时间内,在大约36千伏/厘米(18千伏)的平均电场下被打开,同时以大约1 GHz的双脉冲爆发的重复频率工作。演示了通过改变时间间隔来修改电脉冲频率内容的能力。还讨论了在频率敏捷射频源配置中演示BOSS器件工作的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信