Once you SCOOP, no need to fork

Yannick Hold-Geoffroy, Olivier Gagnon, M. Parizeau
{"title":"Once you SCOOP, no need to fork","authors":"Yannick Hold-Geoffroy, Olivier Gagnon, M. Parizeau","doi":"10.1145/2616498.2616565","DOIUrl":null,"url":null,"abstract":"This paper presents SCOOP, a new Python framework for automatically distributing dynamic task hierarchies. A task hierarchy refers to tasks that can recursively spawn an arbitrary number of subtasks. The underlying computing infrastructure consists of a simple list of resources. The typical use case is to run the user's main program under the umbrella of the SCOOP module, where it becomes a root task that can spawn any number of subtasks through the standard \"futures\" API of Python, and where these subtasks may themselves spawn other subsubtasks, etc. The full task hierarchy is dynamic in the sense that it is unknown until the end of the last running task. SCOOP automatically distributes tasks amongst available resources using dynamic load balancing. A task is nothing more than a Python callable object in conjunction with its arguments. The user need not worry about message passing implementation details; all communications are implicit.","PeriodicalId":93364,"journal":{"name":"Proceedings of XSEDE16 : Diversity, Big Data, and Science at Scale : July 17-21, 2016, Intercontinental Miami Hotel, Miami, Florida, USA. Conference on Extreme Science and Engineering Discovery Environment (5th : 2016 : Miami, Fla.)","volume":"38 4","pages":"60:1-60:8"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"72","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of XSEDE16 : Diversity, Big Data, and Science at Scale : July 17-21, 2016, Intercontinental Miami Hotel, Miami, Florida, USA. Conference on Extreme Science and Engineering Discovery Environment (5th : 2016 : Miami, Fla.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2616498.2616565","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 72

Abstract

This paper presents SCOOP, a new Python framework for automatically distributing dynamic task hierarchies. A task hierarchy refers to tasks that can recursively spawn an arbitrary number of subtasks. The underlying computing infrastructure consists of a simple list of resources. The typical use case is to run the user's main program under the umbrella of the SCOOP module, where it becomes a root task that can spawn any number of subtasks through the standard "futures" API of Python, and where these subtasks may themselves spawn other subsubtasks, etc. The full task hierarchy is dynamic in the sense that it is unknown until the end of the last running task. SCOOP automatically distributes tasks amongst available resources using dynamic load balancing. A task is nothing more than a Python callable object in conjunction with its arguments. The user need not worry about message passing implementation details; all communications are implicit.
一旦你舀了,就不需要叉子了
本文提出了一个新的Python框架SCOOP,用于自动分配动态任务层次结构。任务层次结构指的是可以递归地产生任意数量的子任务的任务。底层计算基础设施由一个简单的资源列表组成。典型的用例是在SCOOP模块的保护伞下运行用户的主程序,在那里它成为一个根任务,可以通过Python的标准“future”API生成任意数量的子任务,并且这些子任务本身可以生成其他子任务,等等。完整的任务层次结构是动态的,在最后一个运行任务结束之前它是未知的。SCOOP使用动态负载平衡在可用资源之间自动分配任务。任务只不过是一个Python可调用对象及其参数。用户无需担心消息传递的实现细节;所有的交流都是含蓄的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信