Embedding-based placement of processing element networks on FPGAs for physical model simulation

Bailey Miller, F. Vahid, T. Givargis
{"title":"Embedding-based placement of processing element networks on FPGAs for physical model simulation","authors":"Bailey Miller, F. Vahid, T. Givargis","doi":"10.1145/2435264.2435297","DOIUrl":null,"url":null,"abstract":"Physical models utilize mathematical equations to model physical systems like airway mechanics, neuron networks, or chemical reactions. Previous work has shown that physical models can execute fast on FPGAs (field-programmable gate arrays). We introduce an approach for implementing physical models on FPGAs that applies graph theoretic techniques to make use of a physical model's natural structure--tree, ring, chain, etc.--resulting in model execution speedups. A first phase of the approach maps physical model equations to a structured virtual PE (processing element) graph using graph theoretic folding techniques. A second phase maps the structured virtual PE graph to physical PE regions on an FPGA using graph embedding theory. We also present a simulated annealing approach with custom cost and neighbor functions that can map any physical model onto an FPGA with low wire costs. Average circuit speedup improvements over previous works for various physical models are 65% using the graph embedding and 35% using the simulated annealing approach. Each approach's more efficient use of FPGA resources also enables larger models to be implemented on an FPGA device.","PeriodicalId":87257,"journal":{"name":"FPGA. ACM International Symposium on Field-Programmable Gate Arrays","volume":"15 2","pages":"181-190"},"PeriodicalIF":0.0000,"publicationDate":"2013-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FPGA. ACM International Symposium on Field-Programmable Gate Arrays","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2435264.2435297","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Physical models utilize mathematical equations to model physical systems like airway mechanics, neuron networks, or chemical reactions. Previous work has shown that physical models can execute fast on FPGAs (field-programmable gate arrays). We introduce an approach for implementing physical models on FPGAs that applies graph theoretic techniques to make use of a physical model's natural structure--tree, ring, chain, etc.--resulting in model execution speedups. A first phase of the approach maps physical model equations to a structured virtual PE (processing element) graph using graph theoretic folding techniques. A second phase maps the structured virtual PE graph to physical PE regions on an FPGA using graph embedding theory. We also present a simulated annealing approach with custom cost and neighbor functions that can map any physical model onto an FPGA with low wire costs. Average circuit speedup improvements over previous works for various physical models are 65% using the graph embedding and 35% using the simulated annealing approach. Each approach's more efficient use of FPGA resources also enables larger models to be implemented on an FPGA device.
基于嵌入的fpga物理模型仿真处理单元网络布局
物理模型利用数学方程来模拟物理系统,如气道力学、神经元网络或化学反应。先前的工作表明,物理模型可以在fpga(现场可编程门阵列)上快速执行。我们介绍了一种在fpga上实现物理模型的方法,该方法应用图论技术来利用物理模型的自然结构——树、环、链等——从而提高模型的执行速度。该方法的第一阶段使用图论折叠技术将物理模型方程映射到结构化的虚拟PE(处理元素)图。第二阶段使用图嵌入理论将结构化的虚拟PE图映射到FPGA上的物理PE区域。我们还提出了一种具有自定义成本和邻居函数的模拟退火方法,可以将任何物理模型以低线成本映射到FPGA上。与以前的工作相比,使用图嵌入方法对各种物理模型的平均电路加速提高了65%,使用模拟退火方法的平均电路加速提高了35%。每种方法都可以更有效地利用FPGA资源,还可以在FPGA设备上实现更大的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信