Lukas Stappen, N. Cummins, Eva-Maria Messner, H. Baumeister, J. Dineley, Björn Schuller
{"title":"Context Modelling Using Hierarchical Attention Networks for Sentiment and Self-assessed Emotion Detection in Spoken Narratives","authors":"Lukas Stappen, N. Cummins, Eva-Maria Messner, H. Baumeister, J. Dineley, Björn Schuller","doi":"10.1109/ICASSP.2019.8683801","DOIUrl":null,"url":null,"abstract":"Automatic detection of sentiment and affect in personal narratives through word usage has the potential to assist in the automated detection of change in psychotherapy. Such a tool could, for instance, provide an efficient, objective measure of the time a person has been in a positive or negative state-of-mind. Towards this goal, we propose and develop a hierarchical attention model for the tasks of sentiment (positive and negative) and self-assessed affect detection in transcripts of personal narratives. We also perform a qualitative analysis of the word attentions learnt by our sentiment analysis model. In a key result, our attention model achieved an un-weighted average recall (UAR) of 91.0 % in a binary sentiment detection task on the test partition of the Ulm State-of-Mind in Speech (USoMS) corpus. We also achieved UARs of 73.7 % and 68.6 % in the 3-class tasks of arousal and valence detection respectively. Finally, our qualitative analysis associates colloquial reinforcements with positive sentiments, and uncertain phrasing with negative sentiments.","PeriodicalId":13203,"journal":{"name":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"47 14","pages":"6680-6684"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2019.8683801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
Automatic detection of sentiment and affect in personal narratives through word usage has the potential to assist in the automated detection of change in psychotherapy. Such a tool could, for instance, provide an efficient, objective measure of the time a person has been in a positive or negative state-of-mind. Towards this goal, we propose and develop a hierarchical attention model for the tasks of sentiment (positive and negative) and self-assessed affect detection in transcripts of personal narratives. We also perform a qualitative analysis of the word attentions learnt by our sentiment analysis model. In a key result, our attention model achieved an un-weighted average recall (UAR) of 91.0 % in a binary sentiment detection task on the test partition of the Ulm State-of-Mind in Speech (USoMS) corpus. We also achieved UARs of 73.7 % and 68.6 % in the 3-class tasks of arousal and valence detection respectively. Finally, our qualitative analysis associates colloquial reinforcements with positive sentiments, and uncertain phrasing with negative sentiments.