Investigation of Network Architecture for Single-Channel End-to-End Denoising

Takuya Hasumi, Tetsunori Kobayashi, Tetsuji Ogawa
{"title":"Investigation of Network Architecture for Single-Channel End-to-End Denoising","authors":"Takuya Hasumi, Tetsunori Kobayashi, Tetsuji Ogawa","doi":"10.23919/Eusipco47968.2020.9287753","DOIUrl":null,"url":null,"abstract":"This paper examines the effectiveness of a fully convolutional time-domain audio separation network (Conv-TasNet) on single-channel denoising. Conv-TasNet, which has a structure to explicitly estimate a mask for encoded features, has shown to be effective in single-channel sound source separation in noise-free environments, but it has not been applied to denoising. Therefore, the present study investigates a method of learning Conv-TasNet for denoising and clarifies the optimal structure for single-channel end-to-end modeling. Experimental comparisons conducted using the CHiME-3 dataset demonstrate that Conv-TasNet performs well in denoising and yields improvements in single-channel end-to-end denoising over existing denoising autoencoder-based modeling.","PeriodicalId":6705,"journal":{"name":"2020 28th European Signal Processing Conference (EUSIPCO)","volume":"4 1","pages":"441-445"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 28th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/Eusipco47968.2020.9287753","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper examines the effectiveness of a fully convolutional time-domain audio separation network (Conv-TasNet) on single-channel denoising. Conv-TasNet, which has a structure to explicitly estimate a mask for encoded features, has shown to be effective in single-channel sound source separation in noise-free environments, but it has not been applied to denoising. Therefore, the present study investigates a method of learning Conv-TasNet for denoising and clarifies the optimal structure for single-channel end-to-end modeling. Experimental comparisons conducted using the CHiME-3 dataset demonstrate that Conv-TasNet performs well in denoising and yields improvements in single-channel end-to-end denoising over existing denoising autoencoder-based modeling.
单通道端到端去噪网络体系结构研究
本文研究了全卷积时域音频分离网络在单通道去噪中的有效性。卷积tasnet具有明确估计编码特征掩模的结构,已被证明在无噪声环境下的单通道声源分离中有效,但尚未应用于去噪。因此,本研究研究了一种学习卷积tasnet去噪的方法,并阐明了单通道端到端建模的最佳结构。使用CHiME-3数据集进行的实验比较表明,与现有的基于自编码器的去噪模型相比,卷积tasnet在单通道端到端去噪方面表现良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信