PPPS-2013: New fast and accurate numerical method for laser-produced relativistic electrons beams transport in the context of ICF — Applications to fast and shock ignition

J. Feugeas, P. Nicolai, M. Touati, J. Breil, B. Dubroca, X. Ribeyre, J. Santos, V. Tikhonchuk, S. Gus'kov
{"title":"PPPS-2013: New fast and accurate numerical method for laser-produced relativistic electrons beams transport in the context of ICF — Applications to fast and shock ignition","authors":"J. Feugeas, P. Nicolai, M. Touati, J. Breil, B. Dubroca, X. Ribeyre, J. Santos, V. Tikhonchuk, S. Gus'kov","doi":"10.1109/PLASMA.2013.6633178","DOIUrl":null,"url":null,"abstract":"Summary form only given. One major issue to address in Inertial Confinement Fusion (ICF) is the detailed description of the kinetic transport of laser generated fast electrons in the time and space scales of the hydrodynamic evolution of the imploded target. We have developed, at CELIA, a fast reduced kinetic model for relativistic electrons transport based on the angular moments of the relativistic Fokker-Planck equation, the M1 model1. This model takes into account the slowing down of fast electrons through collisions with plasma electrons (free and bounded), plasmons and the elastic scattering of fast electrons on plasma ions and electrons. The self-consistent magnetic and electric fields are computed thanks to a generalized Ohm law. This module has been implemented into the 2D radiation hydrodynamic code CHIC2. The M1 model is used as well as for the Fast Ignition (FI) than for the Shock Ignition (SI) schemes. A recent experiment of relativistic electrons transport through Aluminum foils is analyzed thanks to this multi-scales tool. Because of its computing speed, various initial configurations have been tested to reproduce experimental data. In addition, due to its structure, the effects of electric and magnetic fields can easily be highlighted and so the resistive fast electrons losses are directly compared to the collisional losses. Concerning Shock Ignition scheme, it is shown that the energy transfer by fast electrons from the corona to the compressed shell is a important mechanism in the creation of ablation pressure. A 30 keV energy electron beam of 2 - 5 PW/cm2 energy flux may create a pressure amplitude of more than 300 Mbar within few tens of ps in a precompressed solid material3. The dynamics of the ablation layer and the shock evolution are also presented in realistic configurations.","PeriodicalId":6313,"journal":{"name":"2013 Abstracts IEEE International Conference on Plasma Science (ICOPS)","volume":"17 4","pages":"1-1"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Abstracts IEEE International Conference on Plasma Science (ICOPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PLASMA.2013.6633178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Summary form only given. One major issue to address in Inertial Confinement Fusion (ICF) is the detailed description of the kinetic transport of laser generated fast electrons in the time and space scales of the hydrodynamic evolution of the imploded target. We have developed, at CELIA, a fast reduced kinetic model for relativistic electrons transport based on the angular moments of the relativistic Fokker-Planck equation, the M1 model1. This model takes into account the slowing down of fast electrons through collisions with plasma electrons (free and bounded), plasmons and the elastic scattering of fast electrons on plasma ions and electrons. The self-consistent magnetic and electric fields are computed thanks to a generalized Ohm law. This module has been implemented into the 2D radiation hydrodynamic code CHIC2. The M1 model is used as well as for the Fast Ignition (FI) than for the Shock Ignition (SI) schemes. A recent experiment of relativistic electrons transport through Aluminum foils is analyzed thanks to this multi-scales tool. Because of its computing speed, various initial configurations have been tested to reproduce experimental data. In addition, due to its structure, the effects of electric and magnetic fields can easily be highlighted and so the resistive fast electrons losses are directly compared to the collisional losses. Concerning Shock Ignition scheme, it is shown that the energy transfer by fast electrons from the corona to the compressed shell is a important mechanism in the creation of ablation pressure. A 30 keV energy electron beam of 2 - 5 PW/cm2 energy flux may create a pressure amplitude of more than 300 Mbar within few tens of ps in a precompressed solid material3. The dynamics of the ablation layer and the shock evolution are also presented in realistic configurations.
PPPS-2013:在ICF背景下激光产生的相对论电子束输运的新的快速和精确的数值方法-在快速和激波点火中的应用
只提供摘要形式。在惯性约束聚变(ICF)中需要解决的一个主要问题是在时间和空间尺度上详细描述激光产生的快速电子在内爆目标流体动力学演化中的动力学输运。我们在CELIA开发了一个基于相对论性福克-普朗克方程角矩的相对论性电子输运的快速简化动力学模型,M1模型1。该模型考虑了快速电子通过与等离子体电子(自由和有界)的碰撞而减速,等离子体激元以及快速电子对等离子体离子和电子的弹性散射。利用广义欧姆定律计算了自洽磁场和自洽电场。该模块已实现到二维辐射流体力学代码CHIC2中。M1模型用于快速点火(FI),而不是用于冲击点火(SI)方案。利用这种多尺度工具,对最近的一个相对论电子在铝箔中的输运实验进行了分析。由于其计算速度快,各种初始配置已被测试以重现实验数据。此外,由于其结构,电场和磁场的影响很容易被突出,因此电阻性快电子损失直接与碰撞损失进行比较。在激波点火方案中,快速电子从电晕向压缩壳层的能量传递是产生烧蚀压力的重要机制。一个能量为2 - 5pw /cm2的30 keV能量电子束在预压缩固体材料中可以在几十ps内产生超过300 Mbar的压力幅值3。在实际配置下,给出了烧蚀层的动力学和激波演化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信