A Context-based Framework for Resource Citation Classification in Scientific Literatures

He Zhao, Zhunchen Luo, Chong Feng, Yuming Ye
{"title":"A Context-based Framework for Resource Citation Classification in Scientific Literatures","authors":"He Zhao, Zhunchen Luo, Chong Feng, Yuming Ye","doi":"10.1145/3331184.3331348","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce the task of resource citation classification for scientific literature using a context-based framework. This task is to analyze the purpose of citing an on-line resource in scientific text by modeling the role and function of each resource citation. It can be incorporated into resource indexing and recommendation systems to help better understand and classify on-line resources in scientific literature. We propose a new annotation scheme for this task and develop a dataset of 3,088 manually annotated resource citations. We adopt a neural-based model to build the classifiers and apply them on the large ARC dataset to examine the revolution of scientific resources from trends in their function over time.","PeriodicalId":20700,"journal":{"name":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":"142 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3331184.3331348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

In this paper, we introduce the task of resource citation classification for scientific literature using a context-based framework. This task is to analyze the purpose of citing an on-line resource in scientific text by modeling the role and function of each resource citation. It can be incorporated into resource indexing and recommendation systems to help better understand and classify on-line resources in scientific literature. We propose a new annotation scheme for this task and develop a dataset of 3,088 manually annotated resource citations. We adopt a neural-based model to build the classifiers and apply them on the large ARC dataset to examine the revolution of scientific resources from trends in their function over time.
基于上下文的科学文献资源引文分类框架
本文介绍了基于上下文框架的科学文献资源引文分类任务。本课题通过对各资源被引的角色和功能建模,分析科学文本中在线资源被引的目的。它可以整合到资源索引和推荐系统中,以帮助更好地理解和分类科学文献中的在线资源。为此,我们提出了一种新的标注方案,并开发了一个包含3088条人工标注资源引文的数据集。我们采用基于神经网络的模型来构建分类器,并将其应用于大型ARC数据集,从其功能随时间的趋势来检查科学资源的革命。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信