Partial Critical Path Based Greedy Offloading in Small Cell Cloud

Pengtao Zhao, Hui Tian, Bo Fan
{"title":"Partial Critical Path Based Greedy Offloading in Small Cell Cloud","authors":"Pengtao Zhao, Hui Tian, Bo Fan","doi":"10.1109/VTCFall.2016.7881145","DOIUrl":null,"url":null,"abstract":"With mobile applications sharply developing, the battery technology becomes the bottleneck. Meanwhile, mobile users are increasingly sensitive to the latency of an application. The computation offloading in Small Cell Cloud (SCC) can economize the energy consumption of mobile devices efficiently and guarantee the makespan of an application. In this paper, we model the mobile application as a directed acyclic graph (DAG), and formulate an optimization problem of collaborative task execution to minimize the energy consumption on the mobile device while meeting a prescribed latency constraint. In order to solve this NP-hard problem, we propose a greedy algorithm based on partial critical path (GA-PCP) which can solve the problem approximately. The algorithm partitions the DAG into chains and processes these chains with the ``Add- Compare-Select\" strategy to obtain the execution strategy. The algorithm can obtain a polynomial time complexity. Simulation results show that the solution of the GA-PCP is close to the optimal solution of the enumeration algorithm. Besides, the GA-PCP execution strategy can significantly save the energy consumption on the mobile device thereby prolonging its battery life, compared to the local execution.","PeriodicalId":6484,"journal":{"name":"2016 IEEE 84th Vehicular Technology Conference (VTC-Fall)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 84th Vehicular Technology Conference (VTC-Fall)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTCFall.2016.7881145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

With mobile applications sharply developing, the battery technology becomes the bottleneck. Meanwhile, mobile users are increasingly sensitive to the latency of an application. The computation offloading in Small Cell Cloud (SCC) can economize the energy consumption of mobile devices efficiently and guarantee the makespan of an application. In this paper, we model the mobile application as a directed acyclic graph (DAG), and formulate an optimization problem of collaborative task execution to minimize the energy consumption on the mobile device while meeting a prescribed latency constraint. In order to solve this NP-hard problem, we propose a greedy algorithm based on partial critical path (GA-PCP) which can solve the problem approximately. The algorithm partitions the DAG into chains and processes these chains with the ``Add- Compare-Select" strategy to obtain the execution strategy. The algorithm can obtain a polynomial time complexity. Simulation results show that the solution of the GA-PCP is close to the optimal solution of the enumeration algorithm. Besides, the GA-PCP execution strategy can significantly save the energy consumption on the mobile device thereby prolonging its battery life, compared to the local execution.
基于局部关键路径的小细胞云贪心卸载
随着移动应用的迅速发展,电池技术成为了瓶颈。同时,移动用户对应用程序的延迟越来越敏感。在小蜂窝云(SCC)中进行计算卸载可以有效地节省移动设备的能耗,保证应用程序的最大运行时间。在本文中,我们将移动应用建模为一个有向无环图(DAG),并制定了一个协同任务执行的优化问题,以最小化移动设备上的能量消耗,同时满足规定的延迟约束。为了解决这一NP-hard问题,我们提出了一种基于部分关键路径的贪心算法(GA-PCP),该算法可以近似求解这一问题。该算法将DAG划分为多个链,并采用“添加-比较-选择”策略对这些链进行处理,从而获得执行策略。该算法可以获得多项式的时间复杂度。仿真结果表明,GA-PCP算法的解接近枚举算法的最优解。此外,与本地执行相比,GA-PCP执行策略可以显著节省移动设备的能耗,从而延长其电池寿命。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信