IMPLEMENTASI ALGORITMA DECISION TREE UNTUK KLASIFIKASI PRODUK LARIS

Asmaul Husnah Nasrullah
{"title":"IMPLEMENTASI ALGORITMA DECISION TREE UNTUK KLASIFIKASI PRODUK LARIS","authors":"Asmaul Husnah Nasrullah","doi":"10.35329/JIIK.V7I2.203","DOIUrl":null,"url":null,"abstract":"Decision Tree C4.5 algorithm is an algorithm that can be used to make a decision tree. Decision tree (Decision Tree) is one method that is quite easily interpreted by humans. However, this algorithm has never been tested for product classification using private data (stock data and sales of goods at PT Cipta Karya Gorontalo). Therefore this study aims to test the accuracy of C4.5 in classifying best-selling products (private data). As a result of the evaluation of product classification models using Decision Tree C4.5 obtained from this study amounted to 90% and AUC value of 0.709 where this value is included in the Good Classification. It can be used as a data mining classification method Decision Tree C4.5 algorithm is accurate in classifying hot-selling products. \n  \nKeywords— Decision Tree, C4.5, Classification, Best-Selling Product \n ","PeriodicalId":17755,"journal":{"name":"JURNAL ILMIAH ILMU KOMPUTER","volume":"279 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JURNAL ILMIAH ILMU KOMPUTER","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35329/JIIK.V7I2.203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Decision Tree C4.5 algorithm is an algorithm that can be used to make a decision tree. Decision tree (Decision Tree) is one method that is quite easily interpreted by humans. However, this algorithm has never been tested for product classification using private data (stock data and sales of goods at PT Cipta Karya Gorontalo). Therefore this study aims to test the accuracy of C4.5 in classifying best-selling products (private data). As a result of the evaluation of product classification models using Decision Tree C4.5 obtained from this study amounted to 90% and AUC value of 0.709 where this value is included in the Good Classification. It can be used as a data mining classification method Decision Tree C4.5 algorithm is accurate in classifying hot-selling products.   Keywords— Decision Tree, C4.5, Classification, Best-Selling Product  
C4.5算法是一种可以用来制作决策树的算法。决策树(Decision tree)是一种很容易被人类解释的方法。然而,该算法从未使用私人数据(PT Cipta Karya Gorontalo的库存数据和商品销售)进行过产品分类测试。因此,本研究旨在测试C4.5对畅销产品(私有数据)分类的准确性。由于本研究使用决策树C4.5对产品分类模型进行评价,所得结果为90%,AUC值为0.709,该值被纳入良好分类。它可以作为一种数据挖掘分类方法,决策树C4.5算法对热销产品的分类是准确的。关键词:决策树,C4.5,分类,畅销产品
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信