Compact One-Stage Object Detection Network

Chen Xing, Xi Liang, Rongjie Yang
{"title":"Compact One-Stage Object Detection Network","authors":"Chen Xing, Xi Liang, Rongjie Yang","doi":"10.1109/ICCSNT50940.2020.9304979","DOIUrl":null,"url":null,"abstract":"The targets in aerial images captured by drones are difficult to detect due to their small size, those neural networks with better detecting accuracy are too complicated to run real-time job on drone-mounted computer. This paper proposes a network combined residual network and YOLOv3-Tiny, residual network is used to merge different level features for improving YOLOv3-Tiny's small object detecting performance. During the experiment, the proposed network gets 2.9 higher mAP than YOLOv3-Tiny.","PeriodicalId":6794,"journal":{"name":"2020 IEEE 8th International Conference on Computer Science and Network Technology (ICCSNT)","volume":"64 6","pages":"115-118"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 8th International Conference on Computer Science and Network Technology (ICCSNT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSNT50940.2020.9304979","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The targets in aerial images captured by drones are difficult to detect due to their small size, those neural networks with better detecting accuracy are too complicated to run real-time job on drone-mounted computer. This paper proposes a network combined residual network and YOLOv3-Tiny, residual network is used to merge different level features for improving YOLOv3-Tiny's small object detecting performance. During the experiment, the proposed network gets 2.9 higher mAP than YOLOv3-Tiny.
紧凑型单级目标检测网络
无人机捕获的航拍图像中的目标由于体积小而难以检测,那些检测精度较高的神经网络过于复杂,无法在无人机搭载的计算机上实时运行。本文提出了一种残差网络与YOLOv3-Tiny相结合的网络,利用残差网络对不同层次的特征进行合并,以提高YOLOv3-Tiny的小目标检测性能。在实验中,该网络的mAP值比YOLOv3-Tiny高2.9。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信