Direct CO2 Electroreduction from Carbonate

Yuguang C. Li, Geonhui Lee, T. Yuan, Ying Wang, Dae-Hyun Nam, Ziyun Wang, F. P. G. Arquer, Yanwei Lum, C. Dinh, O. Voznyy, E. Sargent
{"title":"Direct CO2 Electroreduction from Carbonate","authors":"Yuguang C. Li, Geonhui Lee, T. Yuan, Ying Wang, Dae-Hyun Nam, Ziyun Wang, F. P. G. Arquer, Yanwei Lum, C. Dinh, O. Voznyy, E. Sargent","doi":"10.26434/chemrxiv.8081777","DOIUrl":null,"url":null,"abstract":"The process of CO2 valorization – all the way from capture/concentration of CO2 to its electrochemical upgrade - requires significant inputs in each of the capture, upgrade, and separation steps. The gas-phase CO2 feed following the capture-and-release stage and into the CO2 electroreduction stage produce a large waste of CO2 (between 80 and 95% of CO2 is wasted due to carbonate formation or electrolyte crossover) that adds cost and energy consumption to the CO2 management aspect of the system. Here we report an electrolyzer that instead directly upgrades carbonate electrolyte from CO2 capture solution to syngas, achieving 100% carbon utilization across the system. A bipolar membrane is used to produce proton in situ, under applied potential, which facilitates CO2 releasing at the membrane:catalyst interface from the carbonate solution. Using an Ag catalyst, we generate pure syngas at a 3:1 H2:CO ratio, with no CO2 dilution at the gas outlet, at a current density of 150 mA/cm2, and achieve a full cell energy efficiency of 35%. The direct carbonate cell was stable under a continuous 145 h of catalytic operation at ca. 180 mA/cm2. The work demonstrates that coupling CO2 electrolysis directly with a CO2 capture system can accelerate the path towards viable CO2 conversion technologies.","PeriodicalId":8439,"journal":{"name":"arXiv: Chemical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Chemical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26434/chemrxiv.8081777","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The process of CO2 valorization – all the way from capture/concentration of CO2 to its electrochemical upgrade - requires significant inputs in each of the capture, upgrade, and separation steps. The gas-phase CO2 feed following the capture-and-release stage and into the CO2 electroreduction stage produce a large waste of CO2 (between 80 and 95% of CO2 is wasted due to carbonate formation or electrolyte crossover) that adds cost and energy consumption to the CO2 management aspect of the system. Here we report an electrolyzer that instead directly upgrades carbonate electrolyte from CO2 capture solution to syngas, achieving 100% carbon utilization across the system. A bipolar membrane is used to produce proton in situ, under applied potential, which facilitates CO2 releasing at the membrane:catalyst interface from the carbonate solution. Using an Ag catalyst, we generate pure syngas at a 3:1 H2:CO ratio, with no CO2 dilution at the gas outlet, at a current density of 150 mA/cm2, and achieve a full cell energy efficiency of 35%. The direct carbonate cell was stable under a continuous 145 h of catalytic operation at ca. 180 mA/cm2. The work demonstrates that coupling CO2 electrolysis directly with a CO2 capture system can accelerate the path towards viable CO2 conversion technologies.
碳酸盐直接电还原CO2
二氧化碳的增值过程——从二氧化碳的捕获/浓缩到其电化学升级——在每个捕获、升级和分离步骤中都需要大量的投入。在捕获和释放阶段之后的气相CO2进料进入CO2电还原阶段会产生大量的CO2浪费(由于碳酸盐形成或电解质交叉,80%至95%的CO2被浪费),这增加了系统二氧化碳管理方面的成本和能源消耗。在这里,我们报告了一种电解槽,它可以直接将碳酸盐电解质从二氧化碳捕获溶液升级为合成气,在整个系统中实现100%的碳利用率。双极膜在施加电位下产生质子,促进二氧化碳在膜-催化剂界面从碳酸盐溶液中释放出来。我们使用Ag催化剂,以3:1的H2:CO比生成纯合成气,在排气口不稀释CO2,电流密度为150 mA/cm2,并实现35%的全电池能量效率。在180 mA/cm2的催化下,直接碳酸盐电池在145 h的连续催化下是稳定的。这项工作表明,将二氧化碳电解直接与二氧化碳捕获系统耦合可以加速实现可行的二氧化碳转化技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信