Activation of phenylalanine ammonia lyase as a key component of the antioxidative system of salt-challenged maize leaves

A. Gholizadeh, B. Kohnehrouz
{"title":"Activation of phenylalanine ammonia lyase as a key component of the antioxidative system of salt-challenged maize leaves","authors":"A. Gholizadeh, B. Kohnehrouz","doi":"10.1590/S1677-04202010000400001","DOIUrl":null,"url":null,"abstract":"Differential antioxidative activities were assessed in the leaves of two maize inbreds (A-180 and A-619) under salt stress and the subsequent recovery period. Total antioxidation test revealed that in both inbreds, this ability was sharply increased during stress period, but was slowly reverted back to the normal level during recovery. The enzymatic antioxidative analysis showed differential patterns in the activities of catalase, peroxidase and polyphenol oxidase in both maize inbreeds. Comparative analysis of the activity of phenylalanine ammonia lyase (PAL), a key enzyme at the gateway of propanoid biosynthetic pathway, suggested that propanoid compounds might be antioxidants of pivotal importance to the salt-challenged maize antioxidation system. As for drought-stressed plants, a PAL-dependent antioxidative strategy is proposed as a promising target for maize salt resistance engineering.","PeriodicalId":9278,"journal":{"name":"Brazilian Journal of Plant Physiology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Journal of Plant Physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/S1677-04202010000400001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

Abstract

Differential antioxidative activities were assessed in the leaves of two maize inbreds (A-180 and A-619) under salt stress and the subsequent recovery period. Total antioxidation test revealed that in both inbreds, this ability was sharply increased during stress period, but was slowly reverted back to the normal level during recovery. The enzymatic antioxidative analysis showed differential patterns in the activities of catalase, peroxidase and polyphenol oxidase in both maize inbreeds. Comparative analysis of the activity of phenylalanine ammonia lyase (PAL), a key enzyme at the gateway of propanoid biosynthetic pathway, suggested that propanoid compounds might be antioxidants of pivotal importance to the salt-challenged maize antioxidation system. As for drought-stressed plants, a PAL-dependent antioxidative strategy is proposed as a promising target for maize salt resistance engineering.
苯丙氨酸解氨酶的激活是盐胁迫玉米叶片抗氧化系统的关键组成部分
研究了两个玉米自交系A-180和A-619叶片在盐胁迫和盐胁迫后恢复期的抗氧化活性差异。总抗氧化试验结果表明,两种自交系的抗氧化能力在应激期急剧增加,但在恢复期缓慢恢复到正常水平。酶促抗氧化分析表明,两个玉米近交系过氧化氢酶、过氧化物酶和多酚氧化酶活性存在差异。对丙氨酸生物合成途径关键酶苯丙氨酸解氨酶(PAL)活性的比较分析表明,丙氨酸类化合物可能是盐胁迫玉米抗氧化系统中至关重要的抗氧化剂。对于干旱胁迫植物,pal依赖的抗氧化策略被认为是玉米抗盐工程的一个有希望的目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信