Approximate regularization paths for nuclear norm minimization using singular value bounds

N. Blomberg, C. Rojas, B. Wahlberg
{"title":"Approximate regularization paths for nuclear norm minimization using singular value bounds","authors":"N. Blomberg, C. Rojas, B. Wahlberg","doi":"10.1109/DSP-SPE.2015.7369551","DOIUrl":null,"url":null,"abstract":"The widely used nuclear norm heuristic for rank minimization problems introduces a regularization parameter which is difficult to tune. We have recently proposed a method to approximate the regularization path, i.e., the optimal solution as a function of the parameter, which requires solving the problem only for a sparse set of points. In this paper, we extend the algorithm to provide error bounds for the singular values of the approximation. We exemplify the algorithms on large scale benchmark examples in model order reduction. Here, the order of a dynamical system is reduced by means of constrained minimization of the nuclear norm of a Hankel matrix.","PeriodicalId":91992,"journal":{"name":"2015 IEEE Signal Processing and Signal Processing Education Workshop (SP/SPE)","volume":"30 1","pages":"190-195"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Signal Processing and Signal Processing Education Workshop (SP/SPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSP-SPE.2015.7369551","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The widely used nuclear norm heuristic for rank minimization problems introduces a regularization parameter which is difficult to tune. We have recently proposed a method to approximate the regularization path, i.e., the optimal solution as a function of the parameter, which requires solving the problem only for a sparse set of points. In this paper, we extend the algorithm to provide error bounds for the singular values of the approximation. We exemplify the algorithms on large scale benchmark examples in model order reduction. Here, the order of a dynamical system is reduced by means of constrained minimization of the nuclear norm of a Hankel matrix.
使用奇异值界的核范数最小化的近似正则化路径
广泛应用于秩最小化问题的核范数启发式引入了一个难以调整的正则化参数。我们最近提出了一种近似正则化路径的方法,即最优解作为参数的函数,该方法只需要对稀疏的点集求解问题。在本文中,我们扩展了该算法,为近似的奇异值提供了误差界。我们在模型降阶的大规模基准示例上对算法进行了验证。在这里,通过汉克尔矩阵核范数的约束最小化来降低动力系统的阶数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信