IoT Botnet Malware Classification Using Weka Tool and Scikit-learn Machine Learning

Susanto, D. Stiawan, M. Arifin, Mohd Yazid Bin Idris, R. Budiarto
{"title":"IoT Botnet Malware Classification Using Weka Tool and Scikit-learn Machine Learning","authors":"Susanto, D. Stiawan, M. Arifin, Mohd Yazid Bin Idris, R. Budiarto","doi":"10.23919/EECSI50503.2020.9251304","DOIUrl":null,"url":null,"abstract":"Botnet is one of the threats to internet network security-Botmaster in carrying out attacks on the network by relying on communication on network traffic. Internet of Things (IoT) network infrastructure consists of devices that are inexpensive, low-power, always-on, always connected to the network, and are inconspicuous and have ubiquity and inconspicuousness characteristics so that these characteristics make IoT devices an attractive target for botnet malware attacks. In identifying whether packet traffic is a malware attack or not, one can use machine learning classification methods. By using Weka and Scikit-learn analysis tools machine learning, this paper implements four machine learning algorithms, i.e.: AdaBoost, Decision Tree, Random Forest, and Naïve Bayes. Then experiments are conducted to measure the performance of the four algorithms in terms of accuracy, execution time, and false positive rate (FPR). Experiment results show that the Weka tool provides more accurate and efficient classification methods. However, in false positive rate, the use of Scikit-learn provides better results.","PeriodicalId":6743,"journal":{"name":"2020 7th International Conference on Electrical Engineering, Computer Sciences and Informatics (EECSI)","volume":"68 27","pages":"15-20"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 7th International Conference on Electrical Engineering, Computer Sciences and Informatics (EECSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EECSI50503.2020.9251304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Botnet is one of the threats to internet network security-Botmaster in carrying out attacks on the network by relying on communication on network traffic. Internet of Things (IoT) network infrastructure consists of devices that are inexpensive, low-power, always-on, always connected to the network, and are inconspicuous and have ubiquity and inconspicuousness characteristics so that these characteristics make IoT devices an attractive target for botnet malware attacks. In identifying whether packet traffic is a malware attack or not, one can use machine learning classification methods. By using Weka and Scikit-learn analysis tools machine learning, this paper implements four machine learning algorithms, i.e.: AdaBoost, Decision Tree, Random Forest, and Naïve Bayes. Then experiments are conducted to measure the performance of the four algorithms in terms of accuracy, execution time, and false positive rate (FPR). Experiment results show that the Weka tool provides more accurate and efficient classification methods. However, in false positive rate, the use of Scikit-learn provides better results.
使用Weka工具和Scikit-learn机器学习的物联网僵尸网络恶意软件分类
僵尸网络是互联网网络安全的威胁之一,botmaster利用网络流量进行通信,对网络进行攻击。物联网(IoT)网络基础设施由廉价,低功耗,始终在线,始终连接到网络的设备组成,并且不显眼,具有无处不在和不显眼的特征,因此这些特征使物联网设备成为僵尸网络恶意软件攻击的有吸引力的目标。在识别数据包流量是否是恶意软件攻击时,可以使用机器学习分类方法。本文利用Weka和Scikit-learn机器学习分析工具,实现了AdaBoost、Decision Tree、Random Forest和Naïve Bayes四种机器学习算法。然后通过实验对四种算法在准确率、执行时间和误报率(FPR)方面的性能进行了测试。实验结果表明,Weka工具提供了更加准确、高效的分类方法。然而,在假阳性率方面,使用Scikit-learn可以提供更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信