Practical Route Planning Under Delay Uncertainty: Stochastic Shortest Path Queries

Sejoon Lim, Christian Sommer, E. Nikolova, D. Rus
{"title":"Practical Route Planning Under Delay Uncertainty: Stochastic Shortest Path Queries","authors":"Sejoon Lim, Christian Sommer, E. Nikolova, D. Rus","doi":"10.15607/RSS.2012.VIII.032","DOIUrl":null,"url":null,"abstract":"We describe an algorithm for stochastic path planning and applications to route planning in the presence of traffic delays. We improve on the prior state of the art by designing, analyzing, implementing, and evaluating data structures that answer approximate stochastic shortest-path queries. For example, our data structures can be used to efficiently compute paths that maximize the probability of arriving at a destination before a given time deadline. Our main theoretical result is an algorithm that, given a directed planar network with edge lengths characterized by expected travel time and variance, pre-computes a data structure in quasi-linear time such that approximate stochastic shortestpath queries can be answered in poly-logarithmic time (actual worst-case bounds depend on the probabilistic model). Our main experimental results are two-fold: (i) we provide methods to extract travel-time distributions from a large set of heterogenous GPS traces and we build a stochastic model of an entire city, and (ii) we adapt our algorithms to work for realworld road networks, we provide an efficient implementation, and we evaluate the performance of our method for the model of the aforementioned city.","PeriodicalId":87357,"journal":{"name":"Robotics science and systems : online proceedings","volume":"52 1","pages":"249-256"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics science and systems : online proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15607/RSS.2012.VIII.032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

Abstract

We describe an algorithm for stochastic path planning and applications to route planning in the presence of traffic delays. We improve on the prior state of the art by designing, analyzing, implementing, and evaluating data structures that answer approximate stochastic shortest-path queries. For example, our data structures can be used to efficiently compute paths that maximize the probability of arriving at a destination before a given time deadline. Our main theoretical result is an algorithm that, given a directed planar network with edge lengths characterized by expected travel time and variance, pre-computes a data structure in quasi-linear time such that approximate stochastic shortestpath queries can be answered in poly-logarithmic time (actual worst-case bounds depend on the probabilistic model). Our main experimental results are two-fold: (i) we provide methods to extract travel-time distributions from a large set of heterogenous GPS traces and we build a stochastic model of an entire city, and (ii) we adapt our algorithms to work for realworld road networks, we provide an efficient implementation, and we evaluate the performance of our method for the model of the aforementioned city.
时延不确定性下的实用路径规划:随机最短路径查询
本文描述了一种随机路径规划算法,并将其应用于存在交通延迟的路径规划中。我们通过设计、分析、实现和评估回答近似随机最短路径查询的数据结构来改进先前的技术状态。例如,我们的数据结构可以用来有效地计算路径,使在给定时间截止日期之前到达目的地的概率最大化。我们的主要理论结果是一种算法,该算法给定一个有向平面网络,其边缘长度以预期旅行时间和方差为特征,在准线性时间内预先计算出一个数据结构,从而可以在多对数时间内回答近似随机最短路径查询(实际的最坏情况边界取决于概率模型)。我们的主要实验结果有两个方面:(i)我们提供了从大量异质GPS轨迹中提取旅行时间分布的方法,并建立了整个城市的随机模型;(ii)我们使我们的算法适用于现实世界的道路网络,我们提供了一个有效的实现,并评估了我们的方法在上述城市模型中的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信