{"title":"Two families of hypercyclic nonconvolution operators","authors":"A. Myers, Muhammadyusuf Odinaev, David Walmsley","doi":"10.2140/INVOLVE.2021.14.349","DOIUrl":null,"url":null,"abstract":"Let $H(\\mathbb{C})$ be the set of all entire functions endowed with the topology of uniform convergence on compact sets. Let $\\lambda,b\\in\\mathbb{C}$, let $C_\\gamma:H(\\mathbb{C})\\to H(\\mathbb{C})$ be the composition operator $C_\\gamma f(z)=f(\\lambda z+b)$, and let $D$ be the derivative operator. We extend results on the hypercyclicity of the non-convolution operators $T_{\\lambda,b}=C_\\gamma \\circ D$ by showing that whenever $|\\lambda|\\geq 1$, the algebra of operators \\begin{align*} \\{\\psi(T_{\\lambda,b}): \\psi(z)\\in H(\\mathbb{C}), \\psi(0)=0 \\text{ and } \\psi(T_{\\lambda,b}) \\text{ is continuous}\\} \\end{align*} and the family of operators \\begin{align*} \\{C_\\gamma\\circ\\varphi(D): \\varphi(z) \\text{ is an entire function of exponential type with } \\varphi(0)=0\\} \\end{align*} consist entirely of hypercyclic operators (i.e., each operator has a dense orbit).","PeriodicalId":8426,"journal":{"name":"arXiv: Functional Analysis","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/INVOLVE.2021.14.349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Let $H(\mathbb{C})$ be the set of all entire functions endowed with the topology of uniform convergence on compact sets. Let $\lambda,b\in\mathbb{C}$, let $C_\gamma:H(\mathbb{C})\to H(\mathbb{C})$ be the composition operator $C_\gamma f(z)=f(\lambda z+b)$, and let $D$ be the derivative operator. We extend results on the hypercyclicity of the non-convolution operators $T_{\lambda,b}=C_\gamma \circ D$ by showing that whenever $|\lambda|\geq 1$, the algebra of operators \begin{align*} \{\psi(T_{\lambda,b}): \psi(z)\in H(\mathbb{C}), \psi(0)=0 \text{ and } \psi(T_{\lambda,b}) \text{ is continuous}\} \end{align*} and the family of operators \begin{align*} \{C_\gamma\circ\varphi(D): \varphi(z) \text{ is an entire function of exponential type with } \varphi(0)=0\} \end{align*} consist entirely of hypercyclic operators (i.e., each operator has a dense orbit).
设$H(\mathbb{C})$为紧集上具有一致收敛拓扑的所有完整函数的集合。设$\lambda,b\in\mathbb{C}$, $C_\gamma:H(\mathbb{C})\to H(\mathbb{C})$是复合运算符$C_\gamma f(z)=f(\lambda z+b)$, $D$是导数运算符。我们扩展了关于非卷积算子$T_{\lambda,b}=C_\gamma \circ D$的超循环性的结果,证明当$|\lambda|\geq 1$时,算子的代数\begin{align*} \{\psi(T_{\lambda,b}): \psi(z)\in H(\mathbb{C}), \psi(0)=0 \text{ and } \psi(T_{\lambda,b}) \text{ is continuous}\} \end{align*}和算子族\begin{align*} \{C_\gamma\circ\varphi(D): \varphi(z) \text{ is an entire function of exponential type with } \varphi(0)=0\} \end{align*}完全由超循环算子组成(即每个算子都有一个密集的轨道)。