"Microscopic behavior of the solutions of a transmission problem for the Helmholtz equation. A functional analytic approach"

T. Akyel, M. Lanza de Cristoforis
{"title":"\"Microscopic behavior of the solutions of a transmission problem for the Helmholtz equation. A functional analytic approach\"","authors":"T. Akyel, M. Lanza de Cristoforis","doi":"10.24193/subbmath.2022.2.14","DOIUrl":null,"url":null,"abstract":"\"Let $\\Omega^{i}$, $\\Omega^{o}$ be bounded open connected subsets of ${\\mathbb{R}}^{n}$ that contain the origin. Let $\\Omega(\\epsilon)\\equiv \\Omega^{o}\\setminus\\epsilon\\overline{\\Omega^i}$ for small $\\epsilon>0$. Then we consider a linear transmission problem for the Helmholtz equation in the pair of domains $\\epsilon \\Omega^i$ and $\\Omega(\\epsilon)$ with Neumann boundary conditions on $\\partial\\Omega^o$. Under appropriate conditions on the wave numbers in $\\epsilon \\Omega^i$ and $\\Omega(\\epsilon)$ and on the parameters involved in the transmission conditions on $\\epsilon \\partial\\Omega^i$, the transmission problem has a unique solution $(u^i(\\epsilon,\\cdot), u^o(\\epsilon,\\cdot))$ for small values of $\\epsilon>0$. Here $u^i(\\epsilon,\\cdot) $ and $u^o(\\epsilon,\\cdot) $ solve the Helmholtz equation in $\\epsilon \\Omega^i$ and $\\Omega(\\epsilon)$, respectively. Then we prove that if $\\xi\\in\\overline{\\Omega^i}$ and $\\xi\\in \\mathbb{R}^n\\setminus \\Omega^i$ then the rescaled solutions $u^i(\\epsilon,\\epsilon\\xi) $ and $u^o(\\epsilon,\\epsilon\\xi)$ can be expanded into a convergent power expansion of $\\epsilon$, $\\kappa_n\\epsilon\\log\\epsilon$, $\\delta_{2,n}\\log^{-1}\\epsilon$, $ \\kappa_n\\epsilon\\log^2\\epsilon $ for $\\epsilon$ small enough. Here $\\kappa_{n}=1$ if $n$ is even and $\\kappa_{n}=0$ if $n$ is odd and $\\delta_{2,2}\\equiv 1$ and $\\delta_{2,n}\\equiv 0$ if $n\\geq 3$.\"","PeriodicalId":30022,"journal":{"name":"Studia Universitatis BabesBolyai Geologia","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Universitatis BabesBolyai Geologia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24193/subbmath.2022.2.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

"Let $\Omega^{i}$, $\Omega^{o}$ be bounded open connected subsets of ${\mathbb{R}}^{n}$ that contain the origin. Let $\Omega(\epsilon)\equiv \Omega^{o}\setminus\epsilon\overline{\Omega^i}$ for small $\epsilon>0$. Then we consider a linear transmission problem for the Helmholtz equation in the pair of domains $\epsilon \Omega^i$ and $\Omega(\epsilon)$ with Neumann boundary conditions on $\partial\Omega^o$. Under appropriate conditions on the wave numbers in $\epsilon \Omega^i$ and $\Omega(\epsilon)$ and on the parameters involved in the transmission conditions on $\epsilon \partial\Omega^i$, the transmission problem has a unique solution $(u^i(\epsilon,\cdot), u^o(\epsilon,\cdot))$ for small values of $\epsilon>0$. Here $u^i(\epsilon,\cdot) $ and $u^o(\epsilon,\cdot) $ solve the Helmholtz equation in $\epsilon \Omega^i$ and $\Omega(\epsilon)$, respectively. Then we prove that if $\xi\in\overline{\Omega^i}$ and $\xi\in \mathbb{R}^n\setminus \Omega^i$ then the rescaled solutions $u^i(\epsilon,\epsilon\xi) $ and $u^o(\epsilon,\epsilon\xi)$ can be expanded into a convergent power expansion of $\epsilon$, $\kappa_n\epsilon\log\epsilon$, $\delta_{2,n}\log^{-1}\epsilon$, $ \kappa_n\epsilon\log^2\epsilon $ for $\epsilon$ small enough. Here $\kappa_{n}=1$ if $n$ is even and $\kappa_{n}=0$ if $n$ is odd and $\delta_{2,2}\equiv 1$ and $\delta_{2,n}\equiv 0$ if $n\geq 3$."
亥姆霍兹方程传输问题解的微观行为。泛函分析方法”
设$\Omega^{i}$, $\Omega^{o}$为包含原点的${\mathbb{R}}^{n}$的有界开连通子集。让$\Omega(\epsilon)\equiv \Omega^{o}\setminus\epsilon\overline{\Omega^i}$为小$\epsilon>0$。然后考虑了在$\partial\Omega^o$上具有Neumann边界条件的$\epsilon \Omega^i$和$\Omega(\epsilon)$对上亥姆霍兹方程的线性传输问题。在$\epsilon \Omega^i$和$\Omega(\epsilon)$中的波数和$\epsilon \partial\Omega^i$中传输条件所涉及的参数适当的条件下,对于$\epsilon>0$的小值,传输问题有一个唯一解$(u^i(\epsilon,\cdot), u^o(\epsilon,\cdot))$。这里$u^i(\epsilon,\cdot) $和$u^o(\epsilon,\cdot) $分别求解$\epsilon \Omega^i$和$\Omega(\epsilon)$中的亥姆霍兹方程。然后证明,如果$\xi\in\overline{\Omega^i}$和$\xi\in \mathbb{R}^n\setminus \Omega^i$,则重新缩放后的$u^i(\epsilon,\epsilon\xi) $和$u^o(\epsilon,\epsilon\xi)$的解可以扩展为$\epsilon$、$\kappa_n\epsilon\log\epsilon$、$\delta_{2,n}\log^{-1}\epsilon$、$ \kappa_n\epsilon\log^2\epsilon $对于$\epsilon$足够小的收敛幂次扩展。如果$n$是偶数则为$\kappa_{n}=1$,如果$n$是奇数则为$\kappa_{n}=0$,如果$n\geq 3$为$\delta_{2,2}\equiv 1$和$\delta_{2,n}\equiv 0$。”
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
31 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信