{"title":"\"Microscopic behavior of the solutions of a transmission problem for the Helmholtz equation. A functional analytic approach\"","authors":"T. Akyel, M. Lanza de Cristoforis","doi":"10.24193/subbmath.2022.2.14","DOIUrl":null,"url":null,"abstract":"\"Let $\\Omega^{i}$, $\\Omega^{o}$ be bounded open connected subsets of ${\\mathbb{R}}^{n}$ that contain the origin. Let $\\Omega(\\epsilon)\\equiv \\Omega^{o}\\setminus\\epsilon\\overline{\\Omega^i}$ for small $\\epsilon>0$. Then we consider a linear transmission problem for the Helmholtz equation in the pair of domains $\\epsilon \\Omega^i$ and $\\Omega(\\epsilon)$ with Neumann boundary conditions on $\\partial\\Omega^o$. Under appropriate conditions on the wave numbers in $\\epsilon \\Omega^i$ and $\\Omega(\\epsilon)$ and on the parameters involved in the transmission conditions on $\\epsilon \\partial\\Omega^i$, the transmission problem has a unique solution $(u^i(\\epsilon,\\cdot), u^o(\\epsilon,\\cdot))$ for small values of $\\epsilon>0$. Here $u^i(\\epsilon,\\cdot) $ and $u^o(\\epsilon,\\cdot) $ solve the Helmholtz equation in $\\epsilon \\Omega^i$ and $\\Omega(\\epsilon)$, respectively. Then we prove that if $\\xi\\in\\overline{\\Omega^i}$ and $\\xi\\in \\mathbb{R}^n\\setminus \\Omega^i$ then the rescaled solutions $u^i(\\epsilon,\\epsilon\\xi) $ and $u^o(\\epsilon,\\epsilon\\xi)$ can be expanded into a convergent power expansion of $\\epsilon$, $\\kappa_n\\epsilon\\log\\epsilon$, $\\delta_{2,n}\\log^{-1}\\epsilon$, $ \\kappa_n\\epsilon\\log^2\\epsilon $ for $\\epsilon$ small enough. Here $\\kappa_{n}=1$ if $n$ is even and $\\kappa_{n}=0$ if $n$ is odd and $\\delta_{2,2}\\equiv 1$ and $\\delta_{2,n}\\equiv 0$ if $n\\geq 3$.\"","PeriodicalId":30022,"journal":{"name":"Studia Universitatis BabesBolyai Geologia","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Universitatis BabesBolyai Geologia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24193/subbmath.2022.2.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
"Let $\Omega^{i}$, $\Omega^{o}$ be bounded open connected subsets of ${\mathbb{R}}^{n}$ that contain the origin. Let $\Omega(\epsilon)\equiv \Omega^{o}\setminus\epsilon\overline{\Omega^i}$ for small $\epsilon>0$. Then we consider a linear transmission problem for the Helmholtz equation in the pair of domains $\epsilon \Omega^i$ and $\Omega(\epsilon)$ with Neumann boundary conditions on $\partial\Omega^o$. Under appropriate conditions on the wave numbers in $\epsilon \Omega^i$ and $\Omega(\epsilon)$ and on the parameters involved in the transmission conditions on $\epsilon \partial\Omega^i$, the transmission problem has a unique solution $(u^i(\epsilon,\cdot), u^o(\epsilon,\cdot))$ for small values of $\epsilon>0$. Here $u^i(\epsilon,\cdot) $ and $u^o(\epsilon,\cdot) $ solve the Helmholtz equation in $\epsilon \Omega^i$ and $\Omega(\epsilon)$, respectively. Then we prove that if $\xi\in\overline{\Omega^i}$ and $\xi\in \mathbb{R}^n\setminus \Omega^i$ then the rescaled solutions $u^i(\epsilon,\epsilon\xi) $ and $u^o(\epsilon,\epsilon\xi)$ can be expanded into a convergent power expansion of $\epsilon$, $\kappa_n\epsilon\log\epsilon$, $\delta_{2,n}\log^{-1}\epsilon$, $ \kappa_n\epsilon\log^2\epsilon $ for $\epsilon$ small enough. Here $\kappa_{n}=1$ if $n$ is even and $\kappa_{n}=0$ if $n$ is odd and $\delta_{2,2}\equiv 1$ and $\delta_{2,n}\equiv 0$ if $n\geq 3$."