Vibration Analysis of Size-Dependent Piezoelectric Nanobeam Under Magneto-Electrical Field

M. Ghadiri, M Karimi Asl, M. Noroozi
{"title":"Vibration Analysis of Size-Dependent Piezoelectric Nanobeam Under Magneto-Electrical Field","authors":"M. Ghadiri, M Karimi Asl, M. Noroozi","doi":"10.22034/JSM.2019.1864682.1446","DOIUrl":null,"url":null,"abstract":"The damping vibration characteristics of magneto-electro-viscoelastic (MEV) nanobeam resting on viscoelastic foundation based on nonlocal strain gradient elasticity theory (NSGT) is studied in this article. For this purpose, by considering the effects of Winkler-Pasternak, the viscoelastic medium consists of linear and viscous layers. with respect to the displacement field in accordance with the refined shear deformable beam theory (RSDT) and the Kelvin-Voigt viscoelastic damping model, the governing equations of motion are obtained using Hamilton’s principle based on nonlocal strain gradient theory (NSGT). Using Fourier Series Expansion, The Galerkin’s method adopted to solving differential equations of nanobeam with both of simply supported and clamped boundary conditions. Numerical results are obtained to show the influences of nonlocal parameter, the length scale parameter, slenderness ratio and magneto-electro-mechanical loadings on the vibration behavior of nanobeam for both types of boundary conditions. It is found that by increasing the magnetic potential, the dimensionless frequency can be increased for any value of the damping coefficient and vice versa. Moreover, negative/positive magnetic potential decreases/increases the vibration frequencies of thinner nanobeam. Also, the vibrating frequency decreases and increases with increasing nonlocal parameter and length scale parameter respectively.","PeriodicalId":17126,"journal":{"name":"Journal of Solid Mechanics and Materials Engineering","volume":"13 1","pages":"570-585"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solid Mechanics and Materials Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/JSM.2019.1864682.1446","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The damping vibration characteristics of magneto-electro-viscoelastic (MEV) nanobeam resting on viscoelastic foundation based on nonlocal strain gradient elasticity theory (NSGT) is studied in this article. For this purpose, by considering the effects of Winkler-Pasternak, the viscoelastic medium consists of linear and viscous layers. with respect to the displacement field in accordance with the refined shear deformable beam theory (RSDT) and the Kelvin-Voigt viscoelastic damping model, the governing equations of motion are obtained using Hamilton’s principle based on nonlocal strain gradient theory (NSGT). Using Fourier Series Expansion, The Galerkin’s method adopted to solving differential equations of nanobeam with both of simply supported and clamped boundary conditions. Numerical results are obtained to show the influences of nonlocal parameter, the length scale parameter, slenderness ratio and magneto-electro-mechanical loadings on the vibration behavior of nanobeam for both types of boundary conditions. It is found that by increasing the magnetic potential, the dimensionless frequency can be increased for any value of the damping coefficient and vice versa. Moreover, negative/positive magnetic potential decreases/increases the vibration frequencies of thinner nanobeam. Also, the vibrating frequency decreases and increases with increasing nonlocal parameter and length scale parameter respectively.
磁电场作用下尺寸相关压电纳米梁的振动分析
基于非局部应变梯度弹性理论(NSGT),研究了粘弹性地基上磁电粘弹性纳米梁的阻尼振动特性。为此,考虑到温克勒-帕斯捷尔纳克效应,粘弹性介质由线性层和粘性层组成。对于位移场,根据精细化剪切变形梁理论(RSDT)和Kelvin-Voigt粘弹性阻尼模型,利用基于非局部应变梯度理论(NSGT)的Hamilton原理得到了运动控制方程。利用傅里叶级数展开,采用伽辽金方法求解了具有简支边界条件和固支边界条件的纳米梁的微分方程。数值结果显示了两种边界条件下,非局部参数、长度尺度参数、长细比和电磁-机电载荷对纳米梁振动特性的影响。结果表明,增大磁势,阻尼系数为任意值时,无量纲频率均可增大,反之亦然。此外,负/正磁势降低/增加了薄纳米梁的振动频率。振动频率随非局部参数和长度尺度参数的增大而减小和增大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信