{"title":"Random sets and Choquet-type representations","authors":"cCaugin Ararat, Umur Cetin","doi":"10.3934/naco.2023008","DOIUrl":null,"url":null,"abstract":"As appropriate generalizations of convex combinations with uncountably many terms, we introduce the so-called Choquet combinations, Choquet decompositions and Choquet convex decompositions, as well as their corresponding hull operators acting on the power sets of Lebesgue-Bochner spaces. We show that Choquet hull coincides with convex hull in the finite-dimensional setting, yet Choquet hull tends to be larger in infinite dimensions. We also provide a quantitative characterization of Choquet hull. Furthermore, we show that Choquet decomposable hull of a set coincides with its (strongly) closed decomposable hull and the Choquet convex decomposable hull of a set coincides with its Choquet decomposable hull of the convex hull. It turns out that the collection of all measurable selections of a closed-valued multifunction is Choquet decomposable and those of a closed convex-valued multifunction is Choquet convex decomposable. Finally, we investigate the operator-type features of Choquet decomposable and Choquet convex decomposable hull operators when applied in succession.","PeriodicalId":44957,"journal":{"name":"Numerical Algebra Control and Optimization","volume":"31 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Algebra Control and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/naco.2023008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1
Abstract
As appropriate generalizations of convex combinations with uncountably many terms, we introduce the so-called Choquet combinations, Choquet decompositions and Choquet convex decompositions, as well as their corresponding hull operators acting on the power sets of Lebesgue-Bochner spaces. We show that Choquet hull coincides with convex hull in the finite-dimensional setting, yet Choquet hull tends to be larger in infinite dimensions. We also provide a quantitative characterization of Choquet hull. Furthermore, we show that Choquet decomposable hull of a set coincides with its (strongly) closed decomposable hull and the Choquet convex decomposable hull of a set coincides with its Choquet decomposable hull of the convex hull. It turns out that the collection of all measurable selections of a closed-valued multifunction is Choquet decomposable and those of a closed convex-valued multifunction is Choquet convex decomposable. Finally, we investigate the operator-type features of Choquet decomposable and Choquet convex decomposable hull operators when applied in succession.
期刊介绍:
Numerical Algebra, Control and Optimization (NACO) aims at publishing original papers on any non-trivial interplay between control and optimization, and numerical techniques for their underlying linear and nonlinear algebraic systems. Topics of interest to NACO include the following: original research in theory, algorithms and applications of optimization; numerical methods for linear and nonlinear algebraic systems arising in modelling, control and optimisation; and original theoretical and applied research and development in the control of systems including all facets of control theory and its applications. In the application areas, special interests are on artificial intelligence and data sciences. The journal also welcomes expository submissions on subjects of current relevance to readers of the journal. The publication of papers in NACO is free of charge.